

Towards We-Government: Collective and participative approaches for
addressing local policy challenges

Grant Agreement number: 693514

Deliverable

D3.5

Final release of WeGovNow
platform prototype

Project co-funded by the European Commission within H2020-EURO-2014-2015/H2020-EURO-6-2015

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services

RE Restricted to a group specified by the consortium (including the Commission Services

CO Confidential, only for members of the consortium (including the Commission Services)

Ref. Ares(2019)2273141 - 29/03/2019

 D3.5 Final release of WeGovNow platform prototype

2

Author List
Organisation Name Contact Information

UniTo Alessio Antonini antonini@di.unito.it

UniTo Liliana Ardissono ardissono@di.unito.it

LiquidFeedback Jan Behrens jan.behrens@flexiguided.de

UniTo Guido Boella boella@di.unito.it

UniTo Luigi Di Caro dicaro@di.unito.it

Infalia Sotris Diplaris sdip@infalia.com

Infalia Elena Dougia elena@infalia.com

UCL Carles Boils Gisbert c.gisbert@ucl.ac.uk

MfC Louise Francis l.francis@mappingforchange.org.uk

MfC Alex Garulli a.garulli@mappingforchange.org.uk

LiquidFeedback Axel Kistner axel.kistner@flexiguided.de

Empirica Lutz Kubitschke lutz.kubitschke@empirica.com

PoliTo Luigi La Riccia Luigi.lariccia@polito.it

UniTo Maurizio Lucenteforte lucenteforte@di.unito.it

UniTo Lucia Lupi lupi@di.unito.it

UniTo Roberto Micalizio micalizio@di.unito.it

Infalia Alexandros Mokkas mokkas@infalia.com

Infalia Spiros Nikolopoulos snik@infalia.com

LiquidFeedback Andreas Nitsche andreas.nitsche@flexiguided.de

Infalia Akis Papadopoulos spap@infalia.com

UniTo Giovanna Petrone petrone@di.unito.it

UniTo Adriano Savoca savoca@di.unito.it

UniTo Claudio Schifanella schi@di.unito.it

UniTo Egidio Dansero egidio.dansero@unito.it

UniTo Cristina Baroglio baroglio@di.unito.it

UniTo Matteo Baldoni baldoni@di.unito.it

UniTo Elena Grassi e.grassi@gmail.com

UniTo Marino Segnan segnan@di.unito.it

LiquidFeedback Björn Swierczek b.swierczek@flexiguided.de

Infalia Ioannis Tsampoulatidis itsam@infalia.com

 D3.5 Final release of WeGovNow platform prototype

3

PoliTo Angioletta Voghera angioletta.voghera@polito.it

Infalia Stefanos Vrochidis svro@infalia.com

UHei Alexey Noskov noskov@uni-heidelberg.de

UHei Adam Rousell adam.rousell@uni-heidelberg.de

Unito Gianmarco Izzi izzi@di.unito.it

Unito Michele Graziadei michele.graziadei@unito.it

Unito Ugo Pagallo Ugo.pagallo@unito.it

Infalia Akis Papadopoulos spap@infalia.com

 D3.5 Final release of WeGovNow platform prototype

4

Status, Abstract, Keywords, Statement of originality
Dissemination level: Public

Deliverable No. 3.5
Leading Partner UniTo

Participating Partners LiquidFeedback, Infalia, UCL, Mapping for
Change, Empirica

Contractual date of delivery: 31 Oct 2017
Actual date of delivery: 22 Dec 2017

Work Package: WP3 – Agile Development of the
WeGovNow platform

Type: Report
Approval Status: Final

Version: 1.0
Abstract
This document describes the third release of WeGovNow platform prototype,
extending the description of the second prototype (deliverable D3.4)
Keywords
Prototype, Platform, Functionalities
Statement of originality
The information in this document reflects only the author’s views and the
European Community is not liable for any use that may be made of the information
contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any purpose. The user
thereof uses the information at its sole risk and liability.

 D3.5 Final release of WeGovNow platform prototype

5

History
Version Date Reason Revised by

1.0 04.10.2017 Creation of the initial
document structure Alessio Antonini

 09.10.2017 TODOs Alessio Antonini

 16.10.2017
Changelogs, section 2,
component/integration tables,
TMP placeholder in section 3

Alessio Antonini

 18.10.2017 OnToMap, OTM logger Liliana Ardissono, Adriano
Savoca

 19.10.2017 ProxyLogger, Torin’s instance
of WGN, Consolidate OTM Alessio Antonini

 23.10.2017 Introduction of Section 4, TMP
in section 5.7, section 4.2.3 Alessio Antonini

 23.10.2017 Section 5.6 Andreas Nitsche

 25.10.2017
Sections structure,
LandingPage, Consolidating
Contributions, Annex 8

Alessio Antonini

 25.10.2017 Section 4 OTM Adriano Savoca, Liliana
Ardissono

 25.10.2017 Section 4 UWUM and
LiquidFeedback

Andreas Nitsche, Axel
Kistner

 25.10.2017
Trusted Marketplace updates
based on stakeholders meeting
outcome

Spiros Nikolopoulos, Ioannis
Tsampoulatidis, Alex
Mokkas, Akis Papadopoulos,
Stefanos Vrochidis, Sotiris
Diplaris, Elena Dougia

 25.10.2017 Trusted Marketplace scenarios Sotiris Diplaris, Stefanos
Vrochidis, Elena Dougia

 25.10.2017 ImproveMyCity section
Ioannis Tsampoulatidis, Alex
Mokkas, Elena Dougia,
Spiros Nikolopoulos

 26.10.2017

Consolidating contributions,
Section 2 structure, Conclusion
topics, exported annex 1 and 2
to separate files

Alessio Antonini

 27.10.2017
Consolidating contributions,
LandingPage deployment,
monitoring and support

Alessio Antonini

 30.10.2017 CommunityMaps/GeoKey
deployment Alex Garulli

 31.10.2017

Consolidating contributions,
4.1 introduction, 6.12
interacting with areaViewer,
Annex 9

Alessio Antonini

 D3.5 Final release of WeGovNow platform prototype

6

 2.11.2017
Conclusions subsection SaaS vs
bundle, consolidating
contributions

Alessio Antonini

 2.11.2017 Annex 1 Liliana Ardissono, Adriano
Savoca

 3.11.2017

4.1, 4.2.2, 4.3.1, user data
storage, 4.3.2 troubleshooting
and support, revision of exhibit
6 and 7, 2.2 and introduction
of 2.3

Alessio Antonini

1.1 9.11.2017
Moved future development in
conclusions, fix future
development 7.1, 7.2, 7.4

Alessio Antonini

1.2 9.11.2017

Geo-Spatial Data Repository
for Quality Assessment was
described: Changelogs, 2.1,
4.2.8, 6, 6.14,

Alexey Noskov, Adam
Rousell

 10.11.2017

Consolidating contributions,
sections 7.3, introduction to
section 7, 6.9 InputMap V3
changelogs, 2.3 integration

Alessio Antonini

 10.11.2017 Trusted Marketplace
description

Spiros Nikolopoulos, Ioannis
Tsampoulatidis, Alex
Mokkas, Akis Papadopoulos,
Stefanos Vrochidis, Sotiris
Diplaris, Elena Dougia

 13.11.2017

FirstLife improvements, fixing
exhibits style, consolidating
contributions, fix table of
contents

Alessio Antonini

1.3 13.11.2017 Revise introduction
Alessio Antonini, Lutz
Kubitschke

 24.11.2017 Added content in 2., 5. (Exh-8),
5.2, Andreas Nitsche

 27.11.2017 Revision Claudio Schifanella

 28.11.2017
Added two screenshots in 5.6
(Exh. 34a and 34b)

Andreas Nitsche

 20.12.2017 Final revision Claudio Schifanella

 19.03.2019
Revision of parts of deliverable
concerning OnToMap, fixing
typos

Liliana Ardissono,
Gianmarco Izzi

 25.03.2019 6.13 updated. Section 7 added Alexey Noskov
 26.03.2019 Final revision Claudio Schifanella

 D3.5 Final release of WeGovNow platform prototype

7

Table of Contents
Author List 2

Status, Abstract, Keywords, Statement of originality 4

History 5

Changelogs 9

Executive Summary 9

1. Introduction 13

2. The modular nature of the WeGovNow platform 16

2.1. Platform instances 19

2.2. The development process of the WeGovNow platform 25

2.3. Approach towards software integration in WeGovNow 26

3. Description of the individual WeGovNow platform components 28

3.1. GeoKey & CommunityMaps 28

3.2. FirstLife 29

3.3. ImproveMyCity 30

3.4. LiquidFeedback 32

3.5. Trusted Marketplace 33

4. Setting up a WeGovNow platform instance 36

4.1. Setup of WeGovNow core 36

4.2. Setup of WeGovNow components 37

4.3. Monitoring and support 44

5. Level of integration achieved in relation to existing and newly developed
components 47

5.1. LandingPage 50

5.2. Authentication Server 53

5.3. GeoKey and Community Maps 55

5.4. FirstLife 60

5.5. ImproveMyCity 64

5.6. LiquidFeedback 72

5.7. Enhanced User Profile Management (module of Trusted Marketplace) 77

5.8. Trusted Marketplace 79

5.8.1. Next steps towards pilot platforms implementation 81

6. Description of platform services 85

 D3.5 Final release of WeGovNow platform prototype

8

6.1. Authentication Service 86

6.2. Application Discovery Service 88

6.3. Style Service 89

6.4. NavigationBar Service 89

6.5. User data storage 90

6.6. Centralised User Profile 90

6.7. Crowdsourced and Linked Open Data endpoint 92

6.8. User’s Activity Logger (OTM logger) 97

6.9. InputMap (V3) 98

6.10. TileServer 105

6.11. Enhanced User Profile Management 106

6.12. AreaViewer (V2) 108

6.13. Geo-Spatial Data Repository (GSDR) of WeGovNow for Quality Assessment
(V3) 112

7. WeGovNow Data Quality Assessment Results 121

7.1. Resulting Datasets 123

7.2. Open Data Evaluation 125

7.3. Evaluation of Open Street Map Data 129

7.4. Ad-Hoc Quality Assessment of Tiled Raster Maps for Parco Dora 131

7.5. Aggregated Data Quality 136

8. Conclusions 140

8.1. How to get WeGovNow 143

Annexes 144

 D3.5 Final release of WeGovNow platform prototype

9

Changelogs
The present document extends the report of the “Second release of WeGovNow
platform prototype”, deliverable D3.4, updating the state of development of
WeGovNow platform. The following list summarises the major changes:

Sections

1. Setting up WeGovNow platform (Section 4)
2. Extended conclusions

Environments

1. Deployment of final prototype https://pt3.wegovnow.eu
2. Deployment of pilot instances

a. https://sandona.wegovnow.eu
b. https://torino.wegovnow.eu
c. https://southwark.wegovnow.eu

New available and updated features

1. InputMap V3: has been revised in style and features to support edit and view
only mode

2. AreaViewer V2: supports interactive messages with host applications, two
different layout behaviours, source prioritization and temporal filters

3. TileServer: extended the endpoints and supporting local repositories of
GeoJSON files

4. OTM Logger: support to API keys for GET requests
5. LoggerProxy endpoint to provide GET requests based on slippy tile notation
6. Geo-Spatial Data Repository (GSDR): a new web service of WeGovNow for data

quality assessment
Platform instance settings

1. Updated Trusted Marketplace component in 3nd prototype installation
2. Re-added temporally unavailable GeoKey/CommunityMap in 2nd prototype

installation
Options for further extensions of the platform

1. Area calendar module in FirstLife

Executive Summary
The present document extends the report of the “Second release of WeGovNow
platform prototype”, deliverable D3.4, updating the state of development of the
WeGovNow platform (see Changelogs for further details). To facilitate easy reading of
the current document as a self-contained report information that has already been
provided in the previous version is repeated to some extent. A change log has been
added summarising the major changes achieved when compared with the previous
version of the WeGovNow prototype.

 D3.5 Final release of WeGovNow platform prototype

10

In a nutshell, WeGovNow strives for integrating a set of innovative software
applications into a unified citizen engagement platform. In doing so the project aims
at overcoming current limitations of existing digital tools for citizen reporting, e-
participation, and communication between the citizen and the public administration.
To this end, a number of civic engagement applications that have already existed prior
to the project are to be integrated into a single online platform together with software
components to be newly developed.

With a view to facilitating the utilisation of the WeGovNow platform within different
local contexts, individual implementation instances are to be configurable in a
modular manner. Also, the new WeGovNow engagement platform is to be principally
extendable with further applications which potentially may be desired to be added in
future implementation instances. Such a multi-faceted set of basic requirements
poses a number of challenges for the design of the WeGovNow platform, in particular
when it comes to

● the development cycle and design process which is to involve a variety of
stakeholders at the three pilot cities participating in WeGovNow,

● and the achievement of a coherent user experiences across a diverse range of
software components to be integrated into a single online platform, including
existing ones and newly developed ones.

Against this background, a multi staged development approach has been adopted for
the purposes of WeGovNow. As graphically summarised in the schema below, four
main phases can be discerned, starting with a thorough consolidation of the initial
platform architecture (D3.1) and the development of suitable testing protocols (D3.2)
to be utilised throughout the subsequent development phases.

This was followed by basic integration work (Phase II) mainly focussing on the
seamless interoperation of those software components that have already existed prior
to WeGovNow, e.g. in terms of a unified user management solution. The previous
report (D3.4) presented a description of the second prototype of WeGovNow
platform. The current report (D3.5) extends the previous report including new
functionalities and ongoing development activities. The remaining duration of the

 D3.5 Final release of WeGovNow platform prototype

11

development phase (Phase III) will focus on the finalisation of the pilot version of the
WeGovNow platform to be publicly operated under day-to-day conditions by the
three pilot municipalities. To this end, the current v3 prototype will undergo further
fine-tuning in collaboration with diverse range of stakeholders in three cities
participating in the project. This will yield the final version of the fully tested platform
which is then to be piloted under everyday conditions with large numbers of users
(Phase IV).

The first release of the WeGovNow prototype platform is provided as a “working”
environment for:

- Development purposes (https://dev.wegovnow.eu)
- Testing and presentation purposes (https://sandbox.wegovnow.eu)

To support the involvement of stakeholders at the three WeGovNow pilot sites during
the next stage of platform development (Phase III) dedicated prototype
implementation instances are provided to each of the three sites:

- San Donà di Piave (https://sandona.wegovnow.eu)
- Southwark (https://southwark.wegovnow.eu)
- Torino (https://torino.wegovnow.eu)

From a development angle, the WeGovNow platform prototype - as it currently stands
- provides an environment of various internal services (core features) required to run
a WeGovNow instance, including smooth interoperation of various stand-alone web
components (WeGovNow components) integrated into the overall platform.

A local WeGovNow implementation instance can be configured to use any
combination of modular components, enabling cross-component features according
to the combination of active components.

From the perspective of the end users, the current version of the prototype platform
provides a number of functionalities through the integration of components that have
existed prior to WeGovNow already, including:

- Map-based social networking functionalities realised by means of integrating
FirstLife;

- Citizen reporting functionalities realised through the integration of
ImproveMyCity;

- Opinion formation and voting functionalities realised through the integration
of LiquidFeedback.

- Community mapping functionalities realised by means of integrating
Community Map and GeoKey

During the process of their seamless integration into the WeGovNow platform, to a
certain extent the existing components underwent further development work.
Beyond this, new software components such as the so-called Trusted Marketplace and

 D3.5 Final release of WeGovNow platform prototype

12

a personal Dashboard were developed. Further to those functionalities immediately
visible to the end users, a range of internal software services were developed as well.
These include for instance a Style Service, an Application Discovery Service, a Unified
Authentication System, a Centralised User Profile and a Centralised Activity Logger.
Such internal software services do not only enable the seamless technical
interoperation of the individual software components which together make up the
overall WeGovNow platform but additional options for user action as well, e.g. though
the combined utilisation of individual platform components by the user. Not at least,
they enable straight forward customisation of local platform implementation
instances. When it comes to interface integration, the approach adopted for the
purposes of WeGovNow can be characterised as a gradual convergence toward a well-
documented design framework (Material Design https://material.io/), a repository to
collect common solutions to shared design issues, and a set of features supporting the
propagation of user setups, customisations and elements among WeGovNow
components. This approach provides a pragmatic solution to the need for providing a
coherent user experience across the platform while at the same time taking into
account that changing the interface design of existing components is much more
complex and resource consuming (and thus costly) when compared with newly
developed components. Also, the design approach adopted for the purpose of
WeGovNow helps in keeping the platform as open as possible towards additional
components that may be desired to be integrated after the ending of the project
duration.

Screen shot of the web interface of the V3 platform prototype

 D3.5 Final release of WeGovNow platform prototype

13

1. Introduction
The present document extends the report of the “Second release of WeGovNow
platform prototype”, deliverable D3.4, updating the state of development of
WeGovNow platform (see Changelogs for further details).

In a nutshell, WeGovNow strives for integrating a set of innovative software
applications into a unified citizen engagement platform. In doing so the project aims
at overcoming current limitations of existing digital tools for citizen reporting, e-
participation, and communication between the citizen and the government as
graphically summarised in Exhibit 1. To this end, a number of civic engagement
applications that have existed already prior to the project are to be integrated into a
single online platform together with various software components to be newly
developed.

Exhibit 1: Graphical overview of the WeGovNow platform and its utilisation.

With a view to facilitating further utilisation of the WeGovNow platform within
different local contexts, individual implementation instances are to be configurable in
a modular manner. Also, the new WeGovNow engagement platform is to be
principally extendable with further applications which potentially may be desired to
be added in future implementation instances. Such a multi-faceted set of basic
requirements poses several challenges for the design of the WeGovNow platform, in
particular, when it comes to

● the development cycle and design process which is to involve a variety of
stakeholders at the three pilot cities participating in WeGovNow,

 D3.5 Final release of WeGovNow platform prototype

14

● and the achievement of a coherent user experiences across a diverse range of
software components to be integrated into a single online platform, including
those that have existed prior WeGovNow already and those that are newly
being developed within the project.

Against this background, a multi staged development approach has been adopted for
the purposes of WeGovNow. As graphically summarised in Exhibit 2, four main phases
can be discerned, starting with a thorough consolidation of the initial platform
architecture (D3.1) and the development of suitable testing protocols (D3.2) to be
utilised throughout the subsequent development phases.

This was followed by basic integration work (Phase II) mainly focussing on the
seamless interoperation of those software components that already existed prior to
WeGovNow, e.g. in terms of a unified user management solution. The previous report
(D3.4) is a paper-based description of the second prototype version of the WeGovNow
platform. The current report (D3.5) extends the previous report including the new
functionalities and ongoing development activities.

Exhibit 2: WeGovNow platform development phases.

During the remaining duration of the development phase (Phase III) work will focus on
the finalisation of the pilot version of the WeGovNow platform to be publicly operated
under day-to-day conditions by the three pilot municipalities. To this end, the final
current prototype version (v3) will undergo further fine-tuning in an iterative manner,
in collaboration with diverse range of stakeholders in three cities participating in the
project. This will yield the final version of the fully tested platform which is then to be
piloted under everyday conditions with large numbers of users (Phase IV).

The following Section 2 of this report provides an overview of the development work
achieved so far. This is followed by a description of the functionalities provided by the
third version of the WeGovNow platform prototype through the integration of existing
software components into the overall platform (Section 3). Section 4 describes how to
set up a new WeGovNow instance. Next, a description of the level of integration

 D3.5 Final release of WeGovNow platform prototype

15

achieved so far is provided when it comes to both, components that have existed prior
WeGovNow already and those components that are specifically being developed for
the purposes of WeGovNow (Section 5). Moreover, core platform features
implemented as internal software services with the current prototype release are
described (Section 6). Conclusions and options for further extensions of the platform
end the document (Section 7).

 D3.5 Final release of WeGovNow platform prototype

16

2. The modular nature of the WeGovNow platform
As described in earlier deliverables, the first release of the WeGovNow platform
prototype (v1 prototype) largely resulted from the integration of existing software
solutions into the overall platform according to an architectural model developed
during the start-up phase of the project (D3.1), under the premise of building a
seamless environment specifically for:

1) user authentication
2) component navigation

The first prototype enabled users to log in from any component and navigate through
the platform, keeping a user authentication session via single-sign-on (“auto login”)
functionality implemented by each component.

From the perspective of integrating the various software components, the first
prototype enabled to use the individual components’ APIs by means of an UWUM
OAuth 2.0 token, generated by users’ authentication. Moreover, the first prototype
enabled the implementation of functionalities within the WeGovNow ecosystem,
based on the following patterns:

1. data integration (JSON/GeoJSON document exchange)
2. inclusion of dynamic html snippet
3. feature integration (HTML/CSS/JavaScript module integration)
4. integrated data based on the common logging system

From a development angle, the two subsequent WeGovNow platform prototype
versions (v2 and v3) provided an environment of services (core features) required to
run a WeGovNow instance, including a set of stand-alone web components
(WeGovNow components) integrated into the overall platform. A local WeGovNow
implementation instance can be configured to use any combination of modular
components, enabling cross-component features according to the combination of
active components.

According to the modular nature of the WeGovNow architecture, the challenge of
integrating diverse software components within a single platform concerns multiple
levels, i.e. integration of data, design and development of common services,
functionalities and interfaces. Each of the individual software applications that have
been integrated into the overall platform has its inner coherence in terms of data,
functionalities and interfaces. However, in terms of WeGovNow platform components
they have been harmonised with a view to add value beyond their implementation as
standalone solutions. The remaining development work strand (Phase III) now focuses
on final harmonisation work concerning the different layers - data, functionalities and
interfaces.

From the perspective of the end users, WeGovNow platform provides the following
core functional elements:

 D3.5 Final release of WeGovNow platform prototype

17

- Map-based social networking functionalities realised by means of integrating
FirstLife. A documentation is available at:

o http://tutorials.firstlife.org/ (Italian)

- Citizen reporting functionalities realised by the integration of ImproveMyCity. A
documentation is available at:

o https://www.youtube.com/watch?v=0NZd6yk0R2E&t=3s (English)

o http://www.improve-my-city.com/features (English)

o https://wegovnow.improve-my-city.com/handbook (English)

- Opinion formation and voting functionalities realised by the integration of
LiquidFeedback. A documentation is available at:

o http://liquidfeedback.org/ (English)

o https://youtu.be/y0e9_-IeRt8 (English)

o http://www.interaktive-demokratie.org/files/downloads/LF-Information-
Kit-EN.pdf (English)

o http://principles.liquidfeedback.org/ (English)

o http://dev.liquidfeedback.org/trac/lf/ (English)

- Customisable community mapping functionalities realised by the integration of
GeoKey and Community Maps. A tutorial for map users and a guide for
administrators is available at:

o http://help.communitymaps.org.uk/en/index.html
o http://geokey.org.uk/help/

- Trusted Marketplace, first prototype (English),
o search, profile management and users’ activities
o offering goods and services in the community

As mentioned earlier, the integration process encompassed newly developed
software components and pre-existing ones which were further redeveloped within
the project. These were augmented by a range of newly developed internal services
which do not immediately become visible to the end user.

When it comes to interface integration in particular, the approach adopted for the
purposes of WeGovNow can be characterised as a gradual convergence toward a well-
documented design framework (Material Design https://material.io/), a repository to
collect the solutions to shared design issues, and a set of features to support the
propagation of user setups, customisations and elements among individual
WeGovNow components.

Adopting a common design standard (Material Design) as a goal to be achieved by the
end of the prototype development phase and continuous collaboration in addressing

 D3.5 Final release of WeGovNow platform prototype

18

common issues can be seen as the operational approach towards software integration
adopted for the purposes of WeGovNow. This approach is a pragmatic solution to the
need of providing a coherent platform in a development context within which
changing the design of existing components is costly, time consuming and not as
straight forward as for new components. Approaching the interface integration as a
path and not as a requisite also enables the WeGovNow platform to remain principally
open towards developers and companies who may be interested in contributing
further platform components in the future, thereby avoiding unreasonable demands
such as to re-design existing software as a mandatory condition.

At the same time, WeGovNow provides many services to support the integration of
platform components, and the choice of Material Design was not at least made due to
the availability of extensive documentations, examples and framework-based material
supporting to the development of material interfaces in the most popular web
languages and frameworks.

Exhibit 3: Screen shot of the landing page of WeGovNow platform final prototype.

From the point of view of the end users, the current release of the platform prototype
is accessed through a common web interface which will be described in more detail
later in this document (Section 5.1). Exhibit 3 provides a screenshot of the common
entry point to the WeGovNow platform prototype as it is currently available to the
users. It is expected that this version will undergo further fine-tuning according to the
stakeholder input to be yielded by the various engagement activities conducted at the

 D3.5 Final release of WeGovNow platform prototype

19

three pilot sites during the final stage of the platform development phase of the
project (Phase III).

2.1. Platform instances

Different platform instances have been set up during the course of WP3 (Exhibit 4). A
dedicated development environment (https://dev.wegovnow.eu) is meant to be
constantly updated with the alfa version of the software, it is specifically required to
test the communication between components and to develop integrations between
components.

The 1st, 2nd and 3rd prototypes versions correspond to three milestones of the project
and development life cycle. The platform versions are frozen “as they are”, to keep
track of the evolution of WeGovNow platform.

Based on the 3rd and final prototype version, three different pilot instances of the
platform have been set up as graphically summarised in Exhibit 4. Prior to the
launching of the public validation trials, in each of the three pilot municipalities, the
current pilot instances of the platform will be subject to customisation and fine-tuning
towards local implementation requirements. The reminder of this subsection provides
an overview of the settings implemented with each platform instance.

Exhibit 4: Overview of WeGovNow platform instances

1st prototype settings

The settings of the first prototype of WeGovNow platform (https://pt1.wegovnow.eu)
includes all existing components:

- CommunityMaps https://wegovnow-cm.geokey.org.uk/
- GeoKey https://wegovnow-gk.geokey.org.uk/admin/dashboard/
- FirstLife https://pt1.wegovnow.firstlife.org/

Platform architecture
& testing protocol

development

Basic
component
integration

Iterative prototype
refinement &

extension

Platform piloting
under day to day

conditions

Phase I Phase II Phase III Phase IV

Platform development instance

v1 Prototype
instance (D3.3)

v2 Prototype
instance (D3.4)

v3 Prototype
instance (D3.5)

San Dona pilot platform instance

Southwark pilot platform instance

Turin pilot platform instance

 D3.5 Final release of WeGovNow platform prototype

20

- ImproveMyCity https://pt1-imc.infalia.com/
- LiquidFeedback https://wegovnow-pt1.liquidfeedback.com/
The entry point of the platform is the first prototype of LandingPage
https://pt1.wegovnow.eu/.

2nd prototype settings

The installation of the second prototype (https://pt2.wegovnow.eu) of WeGovNow
introduces a new component:

- Trusted Marketplace 1st prototype version

The first version of Trusted Marketplace does not provide full functionalities yet, but
it is fully integrated in WeGovNow (see Section 5).

On the other hand, the second prototype does not include GeoKey/CommunityMap
components, due to a technical problem preventing to run multiple instances of
GeoKey that has emerged during the setup operation of the platform instance.

3rd prototype settings

The installation of the third and final prototype (https://pt3.wegovnow.eu) of
WeGovNow (Exhibit 3) was setup with the following components and modules:

● AreaViewer https://pt3.areaviewer.firstlife.org
● FirstLife https://pt3.wegovnow.firstlife.org
● ImproveMyCity https://pt3-imc.infalia.com
● LandingPage https://pt3.wegovnow.eu
● LiquidFeedback https://wegovnow-pt3.liquidfeedback.com
● CommunityMaps https://wegovnow-cm-pt3.geokey.org.uk
● GeoKey https://wegovnow-gk-pt3.geokey.org.uk/admin/dashboard/
● LoggerProxy https://loggerproxy-pt3.firstlife.org
● OnToMapOnToMap https://p3.api.OnToMap.eu
● TileServer https://tiles.firstlife.org
● Trusted Marketplace https://pt3-tmp.infalia.com
● GSDR https://wgn-pt3.gsdr.gq

In this final prototype, ImproveMyCity, Trusted Marketplace and LiquidFeedback
integrated both AreaViewer and InputMap in their own application. All components
can retrieve Open Data from OnToMap (OTM) in order to populate their maps, and
are providing users’ activities to OTM logger, enabling the use of AreaViewer as
consolidated map of WeGovNow.

San Donà di Piave pilot instance

The installation of the San Donà di Piave’s instance of WeGovNow and final prototype
(https://sandona.wegovnow.eu) of WeGovNow (Exhibit 5) was setup with the
following components and modules:

 D3.5 Final release of WeGovNow platform prototype

21

● AreaViewer https://sandona.areaviewer.firstlife.org
● FirstLife https://sandona.wegovnow.firstlife.org
● ImproveMyCity https://sandona-imc.infalia.com
● LandingPage https://sandona.wegovnow.eu
● LiquidFeedback https://sandona.liquidfeedback.net
● Community Maps https://wegovnow-cm-sandona.geokey.org.uk/welcome
● GeoKey https://wegovnow-gk-sandona.geokey.org.uk/admin/dashboard/
● LoggerProxy https://loggerproxy-sandona.firstlife.org
● OnToMap https://sandona.api.OnToMap.eu
● TileServer https://tiles.firstlife.org
● TrustedMarketplace https://sandona-tmp.infalia.com
● GSDR https://wgn.gsdr.gq/sandona

In general, this instance has already been customised in relation to setting interface
colours, and the logo of the Municipality of San Donà di Piave. Moreover,
ImproveMyCity tailored specifically to San Donà di Piave internal workflow (Exhibit 6).
More specifically, the various departments of responsibility and their categories are
set, the statuses of issues are defined and the accounts of the employees per
department and category are created. The notification rules are also set, based on the
Municipalities needs, per issue categories. Finally, the Italian translation strings of
ImproveMyCity are merged to this instance and customised email templates (subject
and body) for notification purposes are set. Customised rules are also applied per
administrator group (e.g. which user groups are allowed to access the reports or
moderate new issues). This instance will be further fine-tuned according to the
stakeholders needs at pilot site level.

 D3.5 Final release of WeGovNow platform prototype

22

Exhibit 5: WeGovNow instance for San Donà di Piave pilot.

 D3.5 Final release of WeGovNow platform prototype

23

Exhibit 6: San Donà di Piave's internal workflow.

Torino pilot instance

The installation of the Torino’s instance of WeGovNow and final prototype
(https://torino.wegovnow.eu) of WeGovNow (Exhibit 7) was setup with the following
components and modules:

● AreaViewer https://torino.areaviewer.firstlife.org
● FirstLife https://torino.wegovnow.firstlife.org
● ImproveMyCity https://torino-imc.infalia.com
● LandingPage https://torino.wegovnow.eu
● LiquidFeedback https://torino.liquidfeedback.net

 D3.5 Final release of WeGovNow platform prototype

24

● Community Maps https://wegovnow-cm-torino.geokey.org.uk
● GeoKey https://wegovnow-gk-torino.geokey.org.uk/admin/dashboard/
● LoggerProxy https://loggerproxy-torino.firstlife.org
● OnToMap https://torino.api.OnToMap.eu
● TileServer https://tiles.firstlife.org
● TrustedMarketplace https://torino-tmp.infalia.com

In general, this instance has yet been customised in terms of setting interface colours,
and the logo of the Municipality of Turin. Moreover, ImproveMyCity translated to
Italian both for frontend and backend. Similar actions as San Dona instance will take
place on Torino instance as well.

Exhibit 7: Torino instance of WeGovNow platform

Southwark pilot instance

The installation of the Southwark’s instance of WeGovNow and final prototype
(https://southwark.wegovnow.eu) of WeGovNow (Exhibit 8) was setup with the
following components and modules:

● AreaViewer https://southwark.areaviewer.firstlife.org
● FirstLife https://southwark.wegovnow.firstlife.org
● ImproveMyCity https://southwark-imc.infalia.com
● LandingPage https://southwark.wegovnow.eu
● LiquidFeedback https://southwark.liquidfeedback.net
● Community Maps https://wegovnow-cm-southwark.geokey.org.uk
● GeoKey https://wegovnow-gk- southwark.geokey.org.uk/admin/dashboard/

 D3.5 Final release of WeGovNow platform prototype

25

● LoggerProxy https://loggerproxy-southwark.firstlife.org
● OnToMap https://southwark.api.OnToMap.eu
● TileServer https://tiles.firstlife.org
● TrustedMarketplace https://southwark-tmp.infalia.com

In general, this instance has yet been customised in terms of setting interface colours,
and the Southwark logo. Similar actions as San Dona instance will take place on
Southwark instance as well.

Exhibit 8: Southwark instance of WeGovNow platform

2.2. The development process of the WeGovNow platform

At the current stage, the features described in the Consolidated WeGovNow System
Architecture (deliverable D3.1) are available in the platform, though some minor last-
minute requirements are currently being integrated within the software components
concerned, e.g. in relation to the Trusted Market Place component (see 3.5). The
WeGovNow architecture is consolidated and tested, as shown by the three
subsequent prototype versions (v1, v2 and v3) and the three pilot instances
torino.wegovnow.eu, sandona.wegovnow.eu, and southwark.wegovnow.eu. All
further improvements will not result in new formal versions of WeGovNow but will be
included via continuous integration or new versions of the single components.

In terms of Agile methodology, the development of WeGovNow required a number of
sprints related to:

1. The release of the common modules
2. The setup of a new instance of the platform

 D3.5 Final release of WeGovNow platform prototype

26

In the first case, the structure of the organisation had a main role, a specific
development team represented by the developer in charge of the task, and all other
teams in testing the module.

In the latter case, the lead of sprints was given to UWUM development team
(LiquidFeedback team), because:

● each task of each component required a feedback or activity by UWUM team
● UWUM setup is the actual bridge of WeGovNow components, and an effective

monitoring system of the instance status
● UWUM incorporates most of the customer requirements: included

components, colours, user verification policy and icon, provided by the
municipalities

Summarising the sprints in WeGovNow development involving more than one of the
technical teams, the following can be mentioned:

● UWUM first release
● UWUM final release
● InputMap first release
● InputMap third release
● AreaViewer second release

Currently, the development teams are involved in:

● UWUM user data storage
● Trusted Marketplace second release
● Community Maps/GeoKey social media integration

From the launching of the public validation trials in the three pilot municipalities
onwards, the WeGovNow platform is expected to be gradually improved, based on
the feedback received, in terms of overall look and feel and user experience, fix
potentially emerging bugs and the like. Dedicated development sprints won’t be
required at that stage anymore, because all pilot platforms will remain stable in terms
of functionalities offered to the users.

2.3. Approach towards software integration in WeGovNow

In technological regard, the WeGovNow platform environment is meant to be
modular, extensible and principally open towards additional software components
potentially desired to be added after the ending of the formal project duration. The
general approach adopted towards integrating a given module into the WeGovNow
overall platform therefore makes it extremely easy to plug in new software modules.
Also, care was taken to enable deepen the level of integration of a given software
component in an incremental manner as deemed useful.

 D3.5 Final release of WeGovNow platform prototype

27

Again, this general background, the minimum integration requirements are related to
user authentication and security of communication, as discussed in Annex 2 “UWUM
integration”. Further integration stages are related to:

1. The adoption of a set of WeGovNow core features (InputMap, AreaViewer,
OnToMap Logger, etc.),

2. The on-demand bilateral (cross-component) integration with individual
software components.

The first type of integration enables a coherent look and feel through across all
platform components:

a. the standardisation of common solutions, such as the map-based modules
b. the harmonisation of the interfaces
c. archiving information consistency with all other components, e.g. by referring

to shared user information
d. enabling cross-component features by sharing relevant information to through

the common pool of user activities and open data

The goal of the second type of integration is to facilitate the implementation of the
particular civic engagement services that WeGovNow platform should support, e.g.
through cross-component navigation, information interlinking, combined features.

In conclusion, the incremental and pragmatic approach adopted by WeGovNow
towards archiving the integration (and further development) of existing and newly
developed civic engagement software modules is our answer to the need for building
a flexible and modular platform for heterogeneous web-based technologies. From a
sustainability perspective, this approach enables at the same time the flexible
extension of the current WeGovNow platform with further software components in
the future.

 D3.5 Final release of WeGovNow platform prototype

28

3. Description of the individual WeGovNow platform
components

As mentioned earlier, technically speaking WeGovNow is an environment integrating
various software components. In general, the capabilities provided by the overall
platform are related to the use of individual components in conjunction with new
possibilities provided by the smooth interworking of those components (cross-
component utilisation). The following sections describe the features provided by
individual components included in WeGovNow platform.

3.1. GeoKey & CommunityMaps

On one hand, GeoKey provides local communities with a web-based infrastructure to
collect, share and discuss local knowledge. You can use it to setup your own mapping
project with your community and to collect, visualise and analyse data using the
tools of your choice.

Key Features

● Setup up your data structures: You decide what data your community should
collect by setting up categories and attributes.

● Decide who can access, contribute and moderate data: Use user groups and
data groupings — a predefined subset of all data contributed to the project
— to define, which users can access, contribute and moderate data.

● Add photos, videos and audio files to your contributions: Enrich your
contributions by uploading photos and videos to each of your contributions.

● Discuss: Comments on each contribution allows you and your community to
discuss observations you have made, offer suggestions and links to other
web-based material.

● Connect your app using our API: Use our public http://geokey.org.uk/docs/
to build and connect applications for data collection, analysis and
visualisation.

On the other hand, we have the web-map based application, CommunityMaps. This
application allows users to collect new data, visualize the existing data, discuss and
attach media to the contributions added to the projects previously created in GeoKey
using the public REST API.

One real example could be that one municipality wants to do a survey to know where
the inaccessible wheelchair local businesses are in the neighbourhood. The
municipality will define the data structure on GeoKey (e.g. defining the name of
business and type of business, selection criteria to assess the level of access etc.). The
municipality will decide who can contribute to the project as well.

 D3.5 Final release of WeGovNow platform prototype

29

Once the municipality makes the project live, any citizen will be able to add
contributions and comments to any of the contributions on the project. Indeed,
users will be able to attach media files such as audio, video and pictures.

GeoKey has different extension which allow project administrators to import and
export data. In this example, the municipality will be able to download the data in
different formats (GeoJSON, KML or CSV), to upload data to existing projects, and
additional functions which you can find on ExCiteS Group repository
(https://github.com/ExCiteS/).

3.2. FirstLife

FirstLife is the newest software among the existing component of WeGovNow, and at
current time is yet to be widely adopted outside pilots and projects. The maturity level
of FirstLife is therefore inferior to others and it is only currently being finalised as
service.

FirstLife addresses the need of a coordination/collaboration platform for urban
activities and urban services. One of the strong aspects of FirstLife is to provide a
working environment shared among the heterogeneous urban actors, such as
institutions, organisations, charities, privates, etc. Moreover, FirstLife supports the
self-organisation of citizens and informal groups.

Mapping, organization and documentation of distributed events

FirstLife supports a set of users’ actions on distributed entities, such as events.

Users can add events on the map, linking them through a set of tags allowing to search
for all the elements connected to a specific topic (for example: the name of a festival
used as tag provide the possibility to create automatically a tag-map) or grouping all
the events in an “initiative” that is a relation among entities. Different users can add
new events on the map and decide to link them to a specific initiative, or contribute
in describing and sharing real-time updates about planned, on-going or past events by
adding a post in the entity card.

Users can create groups and sub-groups to manage in a light way coordination activity
among the organizers and other people involved in the events (supporters, public,
places owners, etc.). News and posts can be shared within each group, but keeping
the information public for all the platform users.

Users can add stories to each event or group, sharing their experience about a specific
event of the initiative in general, building a live and collaborative report of the events.

Users can easily retrieve all contents related to a specific initiative by selecting a period
of interest on the timeline in the main interface and using FirstLife as an interactive
archive of city activities.

 D3.5 Final release of WeGovNow platform prototype

30

Create groups to organize joint activities in multiple places

Citizen organizations operating in one or more neighbourhood of the city can create
groups to coordinate and document the activities related to a specific project, such as
managing a few urban gardens, with their schedules of gardening activities.

Each group can contain a list of places with their cards, events, news and stories. Each
member of the group can add new content to the group (events or news) and visualize
the map of the group.

General users, not members of the group, can explore the group content and choose
to follow the group and receive notification about updates and new-shared content.

3.3. ImproveMyCity

Direct citizen-government communication & collaboration

ImproveMyCity enables residents to directly report, to their public administration,
everyday local issues about their neighbourhood such as; discarded trash bins, faulty
streetlights, and broken tiles on sidewalks, illegal advertising boards, but also ideas
and suggestions.

The reported issues are automatically transmitted to the appropriate department in
public administration to schedule their settlement more quickly and more efficient
comparing to the tradition paperwork based procedures. Reporting is feasible through
a friendly web based frontend that adopts a map-based visualisation, which makes
reporting a user-friendly and intriguing process. The management and routing of
incoming issues is performed through a backend administration infrastructure that
serves as an integrated management system with easy to use interfaces.

Key features frontend

● Accurately positioned issues: By offering a map to facilitate citizens in
determining the exact location of their issue with geocoding and reverse
geocoding support

● Categorised on issue nature: By urging citizens to select one of the pre-
specified categories reflecting the municipality departments and its internal
organisation

● Easily submit new issues: By asking citizens to provide only the information
necessary to locate and resolve the issue, such as title, description, location
and category

● Photo enabled: By allowing to attach one or more images on the spot for
describing the issue, easily with drag ‘n drop

● Commented and voted: By offering the mechanisms to post comments or vote
for issues that have been submitted by other citizens

● Filtering and search: By allowing to see only your own issues, or issues of
specific categories or specific status or a combination of them

 D3.5 Final release of WeGovNow platform prototype

31

Key features backend (concerns the Municipality employees and administrators)

● Browse effectively: Issues are presented on the city map, as an ordered list but
also in a single-issue page displaying the full set of submitted details. Only
assigned issues are visible according to the user group that each officer belongs

● Track pending issues: Issues are automatically routed not only to the
appropriate department but also to the inbox of the responsible officer.
Detailed rules defined who gets notification and on what action

● Provide direct feedback: Provide written feedback to the citizens giving non-
standard explanations for each specific case with a very friendly user interface
that guides officers to take action

● Distributed responsibilities: Assign one or more officers per category and/or
user group and split the administration effort across the municipality
departments

● Monitor progress: Resolve issues and inform citizens by email automatically or
through a progress indicator bar (Open - Acknowledged - Closed, etc.)

● Tailored to each authority/Municipality: Fully customize the system in terms
of user rights, number and nature of categories, notification rules and
localization settings. The hierarchy of the Municipality can be projected to the
application no matter the complexity.

A typical example would be:

A citizen, on her way to work, realised that the pedestrian crossing lights next to the
primary school are not synchronised correctly and more over they do not let enough
time for children to cross the street safely. The citizen does not have time to go in
person to the municipal police to submit an official complain, and she is afraid that
this action will be very time consuming and very bureaucratic. Still she really needs to
inform the officials about the issue because it is not an obvious problem and maybe
no one else noticed that already. She realised the problem after many times of
observing the children and the lights in that specific crossroad. Using ImproveMyCity
to report the issue is very easy. She spots the road by typing the address and she fine
tune the marker by zooming and drag to the correct place on map. She also uploads a
photo of the pedestrian crossing and selects the Municipal Police category from the
available ones. She submits the issue and immediately receives an informative email
that her issue submitted successfully.

On the other hand, the Municipality employees who are set to get notifications when
a new issue is submitted to their department, are aware of the new post. They read
about it and unmoderated since it concerns a real problem and the status of the issue
is set to acknowledged. The issue is now publicly available for other citizens to see
thus promoting transparency. Moments later, the issue receives 15 upvotes and 2
comments by other citizens in the neighbourhood saying that they also are aware of
the problem, but they didn’t know where to report about. It proved to be an issue that
concerned a lot of people but left unreported for months. All these votes, eventually

 D3.5 Final release of WeGovNow platform prototype

32

speed up the process of having the issue fixed in the next 2 days already. The status
of the issue has changed in every step so that the citizens are aware of the progress.
The problem is solved, and anyone could see how fast the Municipality responded.

3.4. LiquidFeedback

LiquidFeedback allows for opinion formation on a given issue with a discussion
(deliberation) phase before the actual voting.

Citizens can start initiatives (proposals) and seek support among their fellow citizens.
Other citizens can suggest improvements or start alternative initiatives. Considering
nobody has enough time and knowledge for every issue, votes can be dynamically
delegated by topic. Delegations are transitive and can be revoked at any time. Liquid
Democracy is sometimes referred to as »Delegated« or »Proxy Voting«.

LiquidFeedback doesn't rely on a request commission and doesn't need a moderator.
Instead, all participants gain equal rights in a scalable structured discussion process
where it is ensured that minorities gain a fair share of representation and that even
individuals may put up their proposals for discussion. The system is designed in such
way that noisy minorities won't harm other minorities in the discussion process.

Predefined rules and timings ensure that plans on decision processes are made public
in time. Decisions are made by recorded vote only, and all voting-relevant data in
LiquidFeedback is made available to all participants in both human– and machine–
readable form. This enables a transparent decision-making process and ensures that
participants can verify the voting procedure.

LiquidFeedback doesn't ask predefined questions but encourages participants to
suggest alternatives. A sophisticated voting system is facilitated to allow participants
to express their opinions without necessity of tactical considerations. Its mathematical
properties avoid vote–splitting and allow that similar proposals don't harm each other.

A typical example would be:

A citizen (initiator 1) suggests to allow BBQ in a given park and creates a new initiative
in the dedicated subject area for this park. As there are no other initiatives on this
matter, a new issue is automatically created. Other citizens support the idea. One
citizen writes a suggestion and asks to consider the fire danger and to restrict the BBQ
use to suitable areas. Some citizens share the concern and support the suggestion.
Initiator 1 accepts the suggestions and uses the input map to mark areas in the park
he thinks may be suitable.

Another citizen (initiator 2) likes the general idea but comes up with an alternative
initiative. She suggests a picnic area with tables, benches and fixed fire places. She
suggests a specific location in the park and marks it on the map. The alternative soon
becomes as popular as the original initiative.

 D3.5 Final release of WeGovNow platform prototype

33

Another citizen suggests another location because that location would be closer to
existing public restrooms. However, initiator 2, does not like the idea and therefore
does not accept the suggestion. As a consequence, the citizen (now initiator 3) starts
another alternative initiative and marks the proposed location on the map.

Over the next weeks all initiatives in this issue undergo a process of improvements by
considering and eventually accepting suggestions. Citizens can support more than one
initiative.

Only a few days before the foreseen discussion phase ends, a citizen (initiator 4) adds
another alternative basically combining initiative 2 and 3 by suggesting picnic areas in
both places.

Finally, all initiatives with the necessary support, e.g. 10 percent of the people
interested in the issue, become voting options. The citizens can vote using a
preferential order, starting with their favorite initiative. This way citizens can agree to
a second choice without fearing this could harm their favorite. Likewise, citizens are
not encouraged to tactical voting, e.g. exclusively voting in favor of the second
choice just because they think their favorite has no chances.

LiquidFeedback’s preferential voting (Clone Proof Schwartz Sequential Dropping)
determines a collective preference.

3.5. Trusted Marketplace

The engagement activities conducted so far revealed useful inputs into the
development of the WeGovNow pilot platform. When it comes to the Trusted
Marketplace component in particular, strong concerns were voiced during a
stakeholder workshop held on October 11 (M21) about the envisaged matching of
demand and supply of voluntary personal support, e.g. when it comes to users offering
help to older persons in activities of daily live. It was highlighted that any municipality
operating the WeGovNow platform could be held legally liable for damages or
fraudulent behaviour potentially occurring in the context of supportive
activities/services mediated through the platform, even if these were delivered on a
voluntary basis. Taking such a risk was considered inacceptable for the municipalities
independent whether the platform was operated in a pilot setting during the project
duration or afterwards in a mainstream setting, and even with a build-in reputation
mechanism as it had been envisaged so far. The liability issue identified at that stage
was assessed as representing a “show stopper” for the public piloting of the entire
WeGovNow platform, and for its further mainstreaming beyond the project duration
as well.

In response to this finding, it was decided to adapt the conceptual approach hitherto
pursued in relation to the Trusted Marketplace. Generally speaking, it is to be avoided
that a direct transaction between individual platform users is occurring through the
WeGovNow Trusted Marketplace in a legally effective manner. To this end, the

 D3.5 Final release of WeGovNow platform prototype

34

WeGovNow Trusted Marketplace shall make a distinction between offerings
concerning items (goods) and volunteering (services). When it comes to items, users
shall be enabled to advertise freebie items to the WeGovNow user community. When
it comes to personal support, local organisations, associations, small charities and
timebanks shall be enabled to advertise opportunities for volunteering they offer in
the community.

Trusted Marketplace in its current state, is composed of the following 3 main parts:

1. The Enhanced User Profile which contains:
a. Set of (non-required) fields to store basic user data:

i. Job, Education, Skills
ii. General interests (e.g. Photography)

iii. Areas of interests (geolocations)
b. Mechanism to link social media accounts (Facebook, Twitter, Google and

LinkedIn) and let TMP to monitor user actions (e.g. when user posts a
tweet, TMP collects its content). This feature is disabled by default and
end-users could activate each account separately (or deactivate) through
the enhanced user profile.

c. The personalised timeline which, under the hood, queries OnToMap
Logger and actually presents all user actions from every WeGovNow
component in a unified manner.

2. The Offers & Demands system which aims:
a. To allow registered users to post offers and demands
b. To allow associations / organisations / small charities to be promoted via

Trusted Marketplace by posting a brief presentation of their purposes and
their offered services (a mechanism to act as yellow pages moderated by
the local authorities). This feature is yet to be implemented (see section
5.8.1 for more details)

3. The matchmaking system, which purpose is:
a. to make personalised suggestions the data used to feed the matchmaking

system are collected by:
i. User actions/activities from each WeGovNow core component

ii. Textual content from linked social accounts (only when users have
activated the social account linking from their enhanced profile)

iii. Custom data entered by users into their enhanced user profile to
send notifications to registered users.

b. To notify users, at regular basis, about their personal actions/activities
collected by each component. Users will be able to switch-off notifications
from the Trusted Marketplace settings.

A typical example would be:

 D3.5 Final release of WeGovNow platform prototype

35

Citizen A is looking to collect used and new toys and clothes for the refugees’
resettlement station that’s being set up currently in the Municipality. He decides to
post a demand in the Trusted Marketplace asking for these goods. After posting the
demand, the matchmaking mechanism sends notification to users who live nearby,
but also to other users that recently tweeted about this new settlement station.
There’s also an offer posted 3 days ago that gives away spare blankets. Since this offer
is tagged with “clothing” label, the matchmaking mechanism notifies the user about
this new demand. There are some comments exchanged asking for further details. The
procedure went better than expected, so citizen A decides to keep his demand active
one more week.

 D3.5 Final release of WeGovNow platform prototype

36

4. Setting up a WeGovNow platform instance
The setup of a WeGovNow platform instance is the setup of the core features of
WeGovNow platform and to setup of the included components. In principle, a
WeGovNow instance can be installed on the same environment, but for the sake of
fast and easy management, because the heterogeneity of the requirements of the
different components, and because there are no reasons to do so, all components and
features will be provided “as service”. In this sense, the setup of a WeGovNow
platform is in general, the setup of a logical or physical instance of each software.

In practice, the setup of a prototype or an instance is done as follows:

1) Identification of the included components, which provide a specific domain
(entry point) to their instance (e.g. https://torino.wegovnow.firstlife.org), and
the communication of the relative RSA public keys to be included in UWUM.

2) Collecting requirements about the styling and labelling of components:
colours, logo, etc.

3) The setup of UWUM services: navigation, application discovery, style and
authentication, the signature of each RSA public key to be used on
server/server communication (UWUM <> component backend)

4) Testing fix of components configuration

The duration of the setup process is around two weeks, and could be considered a
proper Agile sprint in terms of time, effort, goals, documentation and management.

4.1. Setup of WeGovNow core

In terms of functionalities, a WeGovNow instance could be reduced to the sets of core
components, services and modules required to run WeGovNow:

a. LandingPage is an independent component of WeGovNow, its setup follows
the same pattern of any other component.

b. UWUM is a module of LiquidFeedback providing the authorization and
integration framework. Upon setup, the operator of UWUM, i.e. partner
LiquidFeedback, becomes the certificate authority and announces the UWUM
certificate along with the UWUM related URIs for a specific instance. All other
component operators send certificate signing requests (CSRs) to the UWUM
operator and inform the UWUM operator of the endpoint URIs to be used for
their component. The installations for the pilot sites are customized to meet
(or resemble) the municipalities’ corporate look and feel by deploying a color
pair to all components using UWUM’s style endpoint. In addition, the UWUM
navigation bar can be customized to display the municipality logo or coat of
arms. During operation, UWUM provides all services using the endpoints
described in the UWUM work report.

c. OnToMap is backend component, not providing a front-end. OnToMap
provides the other WeGovNow components with logging and data retrieval

 D3.5 Final release of WeGovNow platform prototype

37

services. For both functions OnToMap exploits a domain ontology that
specifies an interlingua to support cross-application data logging and
integration. The setup of OnToMap is described below.

d. TileServer is a REST web service developed in NodeJS, it requires to be cloned
from the repository and configured including the cartographical sources
needed. TileServer does not need to be replicated, it can be used in any
instance of WeGovNow.

e. InputMap is a web application, to be setup and deployed it needs to be cloned
from the repository and configured setting the map defaults (centre, zoom)
and language.

f. AreaViewer is a web application, to be setup and deployed it needs to be clone
from the repository and configured setting the map defaults (centre, zoom),
language, LoggerProxy endpoint (to get the OTM logs from the right
environment).

g. LoggerProxy is a REST endpoint developed in ExpressJS. It requires to be setup
to read data from the right OTM logger endpoint, and to be given a token to
have access to OTM logger GET endpoints.

In the definition of the consolidated architecture, we defined extra core services to
enhance the overall user experience:

h. Enhanced User Management is a module of TMP extending the user profile
page setups with extra information fields such as social network profiles, skills
and education, accessibility preferences and the user’s personal data
management.

i. Accessibility Preferences is a TMP web module providing a wizard to setup
basic accessibility parameters, which will be shared across WeGovNow
components.

4.2. Setup of WeGovNow components

Setting up WeGovNow modules is strongly related to the specific technologies
involved, but more importantly, it is related to the specific business processes
implemented. In other words, to use a component effectively, it needs to be
customised accordingly to the adoption context, for instance ImproveMyCity must be
configured to manage the tickets in respect of the responsibility and accountability of
the roles of the managing organisation. Therefore, these processes of setup
WeGovNow components require a tight collaboration between technical teams and
the adoption institutions (local authorities in case of the pilots).

4.2.1. Community Maps/GeoKey

GeoKey is the backend platform supporting the Community Maps component, both
needs to be installed in the same server instance.

 D3.5 Final release of WeGovNow platform prototype

38

DNS records need to be set for both components and SSL certificates need to be
generated for both domains, Apache SSL configuration file needs to be adjusted
accordingly.

Community Maps

Community Maps component is the frontend element for Geokey GeoKey WGN
platform therefore needs to be deployed after the GeoKey WGN platform has been
set.

1. Community Maps repository needs to be cloned
2. NPM dependencies need to be installed
3. The config.js file need to be edited with URL used by
4. GeoKey platform, client's ID, also add optional Google Analytics details
5. In config.js file the “platformConfig” and “uwumConfig” variables need to be

set accordingly with the URL’s used by the WGN installation.
6. Finally, the production code needs to be built using Grunt.

GeoKey
In order to deploy a GeoKey WGN instance, three main installations are needed:

1. Geokey-commynitymaps extension.
2. Geokey-wegovnow extension.

GeoKey can be run on Python 2.7 only and required to install PostgreSQL and PostGIS
along with other Python dependencies (those are listed on GeoKey Github)

1. Database and superuser database need to be created
2. Once the GeoKey repository has been cloned, all Python dependencies in the

requirement.txt need to be installed
3. The settings.py file needs to be adjusted accordingly with new database and

Super User.

Geokey-CommunityMaps extension

After installing Geokey-communitymaps, this needs to be added as an installed
application in the Geokey settings.py file.

In settings.py file the custom Community Maps middleware needs to be added.

Template loaders need to be extended with a custom Community Maps.

A database migration needs to be run in order to add required Community Maps
extension tables.

 D3.5 Final release of WeGovNow platform prototype

39

Geokey-WeGovNow extension

After installing Django-allauth-uwum and Geokey-wegovnow extensions, those which
need to be added as installed applications in Geokey GeoKey settings.py file along with
the material design support.

UWUM certificate needs to be generated, signed from UWUM authority and uploaded
on the server.

In Geokey GeoKey settings.py file the custom UWUM middleware for requests and
responses needs to be added and the UWUM provider settings accordingly with
UWUM URL’s need to be adjusted along with Geokey GeoKey redirection.

Once a user is created through UWUM registration, it can be upgraded to superuser
Super User in Geokey GeoKey - if it needed.

4.2.2. FirstLife

FirstLife is crowd-based platform enabling users to share information about the city.
Therefore, to setup a FirstLife instance requires:

1. to have a geographical dataset about the urban entities, provided to all other
components through the TileServer endpoints

2. to have a definition of the “things” which could be attached to urban entities,
in general these are events, places (in terms of activities), news, extras
(insights, stories, reports) and groups

3. to define the related category system

These definitions are needed to build a shared environment for the city actors. In
these regards, FirstLife setup is done by considering the common understanding of the
city, through enquiring local stakeholders.

Technical setup

The technical setup of a new FirstLife instance requires the several operations at
server and client side. Summarising, FirstLife backend supports multiple virtual
instances.

The FirstLife backend does not require to run multiple instances, it requires the
parameters of the virtual instance. In practice, the setups at backend side requires
the definition of:

1. Domain: a virtual partition of FirstLife entities
2. Settings to use an OAuth 2.0 authentication server using the “Grant Code” flow
3. A category space for the supported entity types

FirstLife client is an actual instance (copy), including the specific setups of one
instance:

1. The definition of the supported entities: properties, labels, icons, colours and
placeholders

 D3.5 Final release of WeGovNow platform prototype

40

2. The required category space defined in the backend
3. The OAuth server endpoint and configurations
4. Defaults such as mapping start point, map tile servers, required authentication

level to access to the main view
The operations of setting up both backend and client do not require more than 4
hours, including the endpoints, certificates, webserver, parameters and deployment
of the changes.

All FirstLife instances are listed in the backend and frontend repositories, in
configuration files.

4.2.3. ImproveMyCity

In WeGovNow project the version of ImproveMyCity (IMC) that is being used is the
Joomla version. As such, it could be possible to deploy all IMC instances under a single
setup with multiple installations. Instead of doing that, we decided to keep each
instance completely separately. Although the overhead that creates such a decision in
terms of complexity during the setup and maintenance is much higher, the benefits
are multiple. First and foremost, portability. Having own hosted deployment
environment for each instance (currently there are 7 instances running) means that
there are no inter-dependencies and each instance could be transferred to any server
in the cloud or even on-premises at each pilot site. Also, the database schema is kept
tidy and future scaling becomes easier while it is easier to assign super users for
decentralised administration in operation level.

Since September 2017 (M20) all instances are transferred on same IT infrastructure
for easier maintenance. They are hosted under a common Virtual Private Server (VPS)
in Linode Cloud in London data-centre with Long-Term-Support OS. The steps to take
for each instance are briefly the following:

1. Set an A record at INFALIA’s DNS server under the domain infalia.com. The
naming pattern is <instance-name>-imc.infalia.com (e.g. sandona-
imc.infalia.com, pt3-imc.infalia.com). IPv6 is also set accordingly.

2. Setup the Apache configuration file in VPS (e.g. sandona-imc.infalia.com.conf)
3. Use LetsEncrypt free service to get certified SSL support
4. Set the signed UWUM certificate outside web-server (extra security measure)

The above steps are done manually (although for getting LetsEncrypt certificate the
automated certbot script is used which handles most of the complexity). The
remaining steps deal with Joomla installation itself and setting up all the extensions
that are implemented for WeGovNow as explained in Section 5.5 (ImproveMyCity)

1. Create MySQL database and grant access to new database user (the new
database user has access only to this specific database and used only for IMC

2. Install latest stable Joomla setup from the official site (www.joomla.org)

 D3.5 Final release of WeGovNow platform prototype

41

3. Install all extensions that are tailored made for WeGovNow. Currently these
extensions can be found at INFALIA’s public Github repository, but the plan is
to create a WeGovNow-Joomla package and make it available for free in
Joomla Extension Directory (JED)

4. Install the IMC-WeGovNow Lite theme based on Bootstrap and Material
Design

5. The Italian translation files are pulled from Transifex service (in general, the
language files are synchronised automatically in every commit that is pushed
in Github).

The above steps are done semi-automatically by executing a customised shell script
that handles the pulling of all software packages, including Joomla core itself. The
setup of the database and the automated installation of each extension and of the
theme template are controlled by the shell script as well.

Finally, each extension needs to be manually set through the graphical interface as
explained in Section 5.5. The instances for the pilot sites involves some extra steps.

1. Create user groups, departments, categories, rules, notification rules according
to the internal workflow of each local authority. Also, special accounts with
extra privileges for employees are created.

2. Set up the SMTP settings based on pilot sites requirements.

These are the major steps to be taken to deploy an ImproveMyCity instance for the
WeGovNow platform. There are, of course, more technical details (such as how the
certificate is created, how the Apache configuration files are set, etc.) but the overall
procedure and workflow is covered. For full details, you can refer to INFALIA’s Github
repository.

4.2.4. LandingPage

LandingPage is a client web application, as such the setup and deployment require to
clone the project and to setup the environment variables regarding:

● Colour schema based on material design palettes
● UWUM endpoint for the navigation bar and authentication server
● AreaViewer URL to be included
● OnToMap logger endpoint

The project requires to be provided by a web server such as Apache, Nginx or NodeJS
(currently Apache).

As all other components, LandingPage requires the setup of a TLS certificate for each
domain, to be included in UWUM configuration; a server-side service to retrieve the
authentication token (as specified by OAuth 2.0 grant code flow), LandingPages relies
on FirstLife backend to retrieve the authentication token.

 D3.5 Final release of WeGovNow platform prototype

42

4.2.5. LiquidFeedback

For each environment, separate LiquidFeedback Core databases and LiquidFeedback
frontend instances are set up. Every instance is accessible using a dedicated host name
with its own TLS certificate. Therefore, each instance needs to be configured in the
domain name system (DNS). Environment specific settings, e.g. for a specific
municipality, are done per instance.

For every instance, the respective OnToMap logger instance is configured and the
LiquidFeedback specific event mapping is transferred to OnToMap through its API.

To keep operating costs within the project low, all LiquidFeedback instances related
to WeGovNow share the same hardware and use a common Nginx reverse proxy,
although an independent setup would be possible.

4.2.6. OnToMap

All OnToMap instances pertaining to pilot sites or prototypes are managed by one
single running instance; the various instances are identified by the domain name used
to access them. For instance, in the current set up the virtual instances referring to
prototypes 2 and 3 are named as: p2.api.OnToMap.eu and p3.api.OnToMap.eu.

OnToMap stores the Open Data and the information about logged actions relative to
different platform instances in the same datasources: Open Data are stored as Linked
Data in a Triple Store (Parliament, which manages data as RDF triples). Logged activity
data are stored in a no-SQL database (MongoDB). Both the Parliament service and the
MongoDB DBMS serve multiple OnToMap instances and do not need to be replicated
when a new platform instance is created. Within each datasource, the information
items belonging to different pilot instances are virtually separated and can be
identified by URL, as each data item has an URL including the domain name of the
instance.

In order to set up a new instance, the server running OnToMap must be configured to
accept requests sent to the domain name representing the new instance; this is
accomplished by editing the DNS records on the domain name provider used for
OnToMap.eu, and by updating the SSL/TLS certificate used by OnToMap accordingly.

OnToMap uses Let’s Encrypt (https://letsencrypt.org/) as Certificate Authority,
therefore the update/renewal of certificates is free of charge.

OnToMap relies on an instance of Nginx (https://nginx.org/) as a reverse proxy for TLS
termination and client certificate verification; therefore, when a new instance/domain
name is added, the Nginx configuration has to be updated accordingly in order to
associate the correct Certificate Authority used for client certificate verification with
each domain.After correctly updating the Nginx configuration, OnToMap can
recognize the domain receiving the requests (i.e., the virtual instance invoked by the
WeGovNow applications) and manage logger and open data separately for each

 D3.5 Final release of WeGovNow platform prototype

43

instance. Log data collected by applications are initially inexhistent; they are pushed
to the OTM Logger at platform runtime. Differently, the Open Data specific to the new
instance (if any) have to be imported in the Triple store, after having been converted
to RDF. RDF data can be loaded in the Triple store using the Parliament web interface
(see Annex 1). Notice that, at data conversion time, it is possible to specify whether
data items can be visible to all OnToMap instances, or they have only to be visible in a
defined list of instances. Each data item visible to a specified list of instances must
have an “applicationInstance” property set to the name of the instance, for each
possible instance; e.g., “applicationInstance=torino”; “applicationInstance=sandona”,
etc. The property is not set for the data items visible in all the platform instances.

4.2.7. Trusted Marketplace

Since September 2017 (M20) all instances are transferred on same IT infrastructure
for easier maintenance. They are hosted under a common Virtual Private Server (VPS)
in Linode Cloud in London data-centre with Long-Term-Support OS. The steps to take
for each instance are briefly the following:

1. Set an A record at INFALIA’s DNS server under the domain infalia.com. The
naming pattern is <instance-name>-tmp.infalia.com (e.g. sandona-
tmp.infalia.com, pt3-tmp.infalia.com). IPv6 is also set accordingly.

2. Setup the Apache configuration file in VPS (e.g. sandona-tmp.infalia.com.conf)
3. Use LetsEncrypt free service to get certified SSL support
4. Set the signed UWUM certificate outside web-server (extra security measure)

The above steps are done manually (although for getting LetsEncrypt certificate the
automated certbot script is used which handles most of the complexity). The
remaining steps presented below:

1. Clone Trusted Marketplace repository (https://github/infalia/tmp) and install
dependencies via composer

$ composer update

2. Configuration. Rename the .env.example file to .env and edit the application’s
configuration variables. APP_KEY variable should have been been generated.
If not, the command below creates it automatically.

$ php artisan key:generate

3. Public directory. After Laravel installation (Trusted Marketplace is based on
Laravel 5.5), the web server configuration follows. The file public/index.php
serves as the front controller for all HTTP requests invoking Trusted
Marketplace.

4. Permissions. Directories within the storage and the bootstrap/cache
directories should be writable by the web server otherwise Laravel will
function run as expected.

5. Database. After creating an empty Postgresql database the following
commands should be executed to create the tables and seed the initial data.

 D3.5 Final release of WeGovNow platform prototype

44

$ php artisan migrate

$ php artisan db:seed

4.2.8. Geo-Spatial Data Repository (GSDR) for Quality Assessment

All instances of Geo-Spatial Data Repository (GSDR) of WeGovNow for Quality
Assessment (i.e., the latest release https://wgn.gsdr.gq, prototype 3 https://wgn-
pt3.gsdr.gq, San Dona Di Piave instance https://wgn.gsdr.gq/sandona) are managed
by a single instance of Apache web server configured to use multiple virtual hosts.
GSDR deployment is a trivial procedure. First, Apache Rivet (an extension of Apache
web server, https://tcl.apache.org/rivet/), Spatialite (a spatial extension of SQLite3
database, https://www.gaia-gis.it/fossil/libspatialite/index) and a few additional
dependencies (e.g., tcllib, tclsqlite, tiles.cf, igis.tk) need to be installed and configured.
Second, a folder containing requited files (i.e., a predefined spatial database file,
JS/CSS/PNG media files, *.rvt and *.tcl files) needs to be copied to a server.

GSDR uses Let’s Encrypt (https://letsencrypt.org/) as Certificate Authority and
Freenome DNS resolver (http://www.freenom.com), thus SSL Centificates and domain
names are free of charge. Apache Rivet allows utilizing Apache MPM prefork module.
This enables us to process multiple users’ requests effectively in parallel non-blocking
manner. Source code is managed by Fossil version control system (https://www.fossil-
scm.org) and available for developers through CGI interface. This allows version
control, ticketing, wiki documentation.

4.3. Monitoring and support

Given the structure of WeGovNow platform, all monitoring and support activities are
direct responsibility of the technical teams for their own modules.

Thus, considering that one of the most valuable feature WeGovNow project offers is
the availability of an open platform in which different components can be integrated
by leveraging a common set of core services, the second level support (and
monitoring) is delegated to the component owners, which are clearly best qualified
for this task. For what concerns the first level monitoring and support, the priority is
given to the local contacts, as they have a better perception of the needs and
backgrounds of end users.

In order to smooth the inevitable issues resulting from the project complexity, we are
exploring a set of pragmatic solutions, in particular:

● cheatsheet of WeGovNow environments (see Annex 8) for the technical
teams including

o endpoints of each component, module and feature
o references to online resources and guides

 D3.5 Final release of WeGovNow platform prototype

45

● vademecum (see Annex 9) for each trial sites including
o a short description of the applicative scenarios
o referents of the municipality and other local facilitators
o a short description of the role of each component in the applicative

scenarios
o technical referent for each component
o references to online resources and guides

The goal of those simple tools is to address the practical challenges of working on and
with WeGovNow, without introducing extra tools, repositories or other technological
solutions.

4.3.1. Monitoring

Since all WeGovNow components are currently provided “as service” in all existing
instances, the monitoring of WeGovNow is actually delegated to each technical team
in regard to their own components. As described in deliverable D3.2, each component
is based on different technologies, and each team has different consolidated practices
in managing their own services. Therefore, the monitoring of WeGovNow instance is
a shared activity, in which all partners are responsible, and each technical team is
accountable for their own component, as it is in general for the development and
continuous integration activities.

4.3.2. Troubleshooting and Support

The general architecture of a support system requires a single point of contact (1st
level), a technical level (2nd level) and a local support. In the piloting of WeGovNow
platform, the single point of contact is a responsibility of the local municipalities, and
given the previous considerations about the structure of WeGovNow instances, the
technical support is a responsibility shared among all technical teams.

WeGovNow as service formally provided by the local municipality falls in the general
management of the municipality services. Therefore, the implementation of the single
point of contact is strongly dependent on the local protocols and structures, making
not realistic to define a common policy nor approach. On the other hand, considering
the piloting of WeGovNow “engagement activities”, involving local facilitator, the
creation of a vademecum (see Annex 9) is a pragmatic solution to provide the
minimum information about the pilot scope and goals, and the role and use of each
component under the scope of the pilot, and the direct contact to get the support,
bypassing the official service support office.

As support of this approach, should the piloting of WeGovNow should be considered
as part of the design of WeGovNow-based services, requiring a direct interaction
between municipalities, citizens and technological providers, rather than the
introduction of a new standard service.

 D3.5 Final release of WeGovNow platform prototype

46

 D3.5 Final release of WeGovNow platform prototype

47

5. Level of integration achieved in relation to existing and
newly developed components

As mentioned earlier, the WeGovNow platform includes a number of software
components that have existed prior of WeGovNow already, augmented with various
components that have been specifically developed within the project. Exhibit 9
provides an overview of all software components implemented. As can be seen from
the table, the current prototype includes all already existing features and some new
features developed so far. Each component provides a set of features to users, and to
other software components to enable new integrated features. A subset of modules
provides the core features of the platform (WGN Core).

The status of the integration of individual components into the overall platform can
be evaluated by the adoption of WeGovNow core features (the features required to
let stand-alone components to be integrated in the platform):

1) UWUM integration, the adoption of the WeGovNow authentication server and
the correct use of OAuth 2.0 protocol

2) Single-sign-on: "Auto login", check of user session and seamless login in the
software components as the users switch from one component to another

3) APIs over UWUM token, the component APIs can be invoked using an UWUM
token

4) NavigationBar service, the component is dynamically retrieving the
NavigationBar as HTML or JSON from UWUM

5) AreaViewer integration, the map-based summary view is done using
AreaViewer, which incorporates the information from the common logger

6) Log User’s activities, the software component is integrated with the logger and
is sending information about user’s actions

7) InputMap integration, the software component collects user’s location inputs
using InputMap

8) User Profile Service, the software component uses stores and retrieves the
common user information in UWUM

9) Material Design, the software component follows material design guidelines
10) Styling service, the software component retrieves the platform styles

dynamically from UWUM
11) WCAG 2.0 AA, the software component is compliant with the guidelines about

accessibility as prescribed by WCAG 2.0 level AA
12) Accessibility Setup, the software component retrieves dynamically the user

accessibility setups from UWUM as they are populated in enhanced user
profile in Trusted Marketplace

 D3.5 Final release of WeGovNow platform prototype

48

Exhibit 9: Software components, modules and features in WeGovNow prototypes.

Software
Components Modules Core Features Pre 1 2 3

Community Map Core
GeoKey data visualisation

X X * X

Contribution
management

X X * X

GeoKey Core

Project management
X X * X

SocialMedia publishing
 X * ~

Data import
X X * X

FirstLife

InputMap X

Map-based input
 X X X

Edit and view mode
 X

Geocoding
 X

TileServer X
Vector Tile Server

 X X

LoggerProxy Tile-based queries on
OTM logger

 X

Core

Custom Maps
X X X X

Collaborative Initiatives
 X X X

Crowdmapping
X X X X

Area calendar

ImproveMyCity Core

Issue reporting
X X X X

Issue management
X X X X

Organisation
management

X X X X

LandingPage AreaViewer X

Map-based view
 ~ X X

Priority of sources
 X

Data interval support
 X

 D3.5 Final release of WeGovNow platform prototype

49

Data export

User's Area
User's fast access

LiquidFeedback

UWUM X

Authentication
 X X X

Style
 X X X

Application discovery
 ~ X X

Dynamic client
registration

 X X X

Navigation bar
 X X X

User profile & settings
via API

 ~ X X

Core

Delegation management
X X X X

Collaborative proposals
X X X X

Voting
X X X X

Independence of "subject
area memberships"

 X X X

Storage of geo data and
geo-spatial indices and

searches
 X X X

OnToMap

Logger X
Activity logger

 X X X

Core

Open data
X X X X

Semantic search
X X X X

Data integration
 ~ X

Trusted
Marketplace

Enhanced
User Profile

Management
X

Accessibility preferences
 ~ X X

User profile settings
 ~ X X

Core

Activity timeline
 X X

Reputation mechanism
 ~ #

Offer & Demands
 X X

 D3.5 Final release of WeGovNow platform prototype

50

Data export

(~) almost ready (*) ready but not deployed (X) ready and deployed (#) deprecated

The level of integration of the existing components is currently restricted to the core
features released so far and to the relevance of the core features in the mechanisms
and purposes of the software components (see Exhibit 10).

Some components introduced by the WeGovNow Consolidated System Architecture
(D3.1), including the so called Trusted Marketplace, are still under development.

Exhibit 10: Level of integration of WeGovNow software components

 LP UWUM PSW GK CM FL IMC LF TM*
UWUM integration X X X X X X X X

Single-sign-on/auto login X X X X X X X X

APIs over UWUM token X X X X X ~ X ~

NavigationBar service X X - X X X X X

AreaViewer integration* X X - - - - X X X

Log User’s activities ~ * * X X X X

InputMap integration - - - - - X X X X

User Profile service X X X

UserDataStorage X

Material Design X X ~ ~ X X X

Styling service ~ X ~ ~ X ~

WCAG 2.0 AA ~ X ~ ~
(X): archived, (~): work in progress, (-) not applicable, (*) not released yet,
LP: LandingPage, UWUM: Unified WeGovNow User Management is provided by LF (includes
Authentication Server, User and Application Management),
PWP: Profile and settings wizard is provided by TM, GK: GeoKey; CM: CommunityMap, FL:
FirstLife, IMC: ImproveMyCity, LF: LiquidFeedback, TM: TrustedMarketplace

5.1. LandingPage

The LandingPage is the entry point of WeGovNow platforms. It has the role of
presenting a summary of the status of WeGovNow platform. LandingPage is not an
existing component, it was introduced during the development of the general
architecture of WeGovNow (D3.1 Consolidated System Architecture).

The LandingPage has two main components (see Exhibit 11):

a) AreaViewer, a map-based view integrating information about the activities in the
current instance of WeGovNow

b) (to be implemented) UserArea, a menu to collect direct links to user’s last activities
in the different WeGovNow components

 D3.5 Final release of WeGovNow platform prototype

51

Furthermore, the LandingPage will include the styling personalisations requested for
each instance of WeGovNow.

Exhibit 11: LandingPage includes the NavigationBar, AreaViewer (the map on the
left) and UserArea to collect references to user’s activities.

UserArea’s purpose is to provide a direct access to latest entities which a logged in
user interacted with. It retrieves logs of user’s activities from OnToMap logger to build
a list of entities structured by their origin component (Exhibit 12). The list of activities
provides a direct access to the origin component (deep linking integration),
highlighting if new updates are available.

User area

AreaViewer

 D3.5 Final release of WeGovNow platform prototype

52

Exhibit 12: OnToMap (OTM) logs of user’s activities are first clustered by entity and
then organised by the source of activities

Interaction between AreaViewer and UserArea

By clicking on AreaViewer, a user’s selects a “focus area” (Exhibit 13, step 1): the
current area of interest of the user. Once selected an area, AreaViewer sends a
message to LandingPage communicating, “focusOn” event, the details of the selected
area and the list of included Point of Interests (POIs), representing the activities in that
area (Exhibit 13, step 2).

In LandingPage, AreaViewer settings includes “interaction=false” preventing the
display of the list of contents within AreaViewer (see section 6.12). The focus event
will trigger a change of the UserArea replacing the user activities with the list of entries
provided by AreaViewer (Exhibit 13, step 3). UserArea can trigger changes in
AreaViewer, for instance sending “toExplore” message (Exhibit 13, step 5) to reset
AreaViewer (Exhibit 13, step 6).

 D3.5 Final release of WeGovNow platform prototype

53

Exhibit 13 : An AreaViewer/UserArea interaction flow

LandingPage is implemented in Angular 4.x TypeScript.

5.2. Authentication Server

New users can register either by using an email address, existing social media
credentials or local identity providers. The registration is valid for all components of a
WeGovNow installation. In Exhibit 14 and Exhibit 15, login user interfaces.

The Authentication Server is provided by LiquidFeedback. The implementation shall
also support user login using social media ID services. This allows participants to use
already known credentials to access a WeGovNow platform - no need for another
password. It is planned that Google ID and Facebook Login will be supported out of
the box. The municipalities within the WeGovNow project are in the process of
assessing the legal and political implications also taking the new General Data
Protection Regulation of the European Union into account. Decisions to be taken by
the municipalities may suggest minor re-adjustments of development priorities. Other
ID providers could be added using an external login interface. Nevertheless, using
social media ID services does not replace an appropriate accreditation process of the
participants to ensure that no person can use multiple accounts to increase their
voting weight (adherence to "one man – one vote").

For certain rights, e.g. voting privileges, a validation of an existing account may be
necessary. A user can request his or her account to be validated. To ensure a proper
accreditation process, the validation process for a given installation must be defined
by the municipality or organization in charge of the WeGovNow installation.

 D3.5 Final release of WeGovNow platform prototype

54

Exhibit 14: UWUM login form.

Exhibit 15: UWUM recovery password form.

The Authentication Server provides single-sign-on functionality for all other
applications. The already implemented full-fledged OAuth 2.0 server implementation
allows to share participant authorization information with other components of a
participation solution, e.g. mapping or issue reporting components. Furthermore, the
unified user management allows sharing of profile data and user settings across

 D3.5 Final release of WeGovNow platform prototype

55

different components of a participation solution. This allows a seamless integration of
all components into a homogeneous platform. Participants can access all connected
components without the need for multiple account registrations or multiple logins on
different platforms. In turn, other applications can rely on LiquidFeedback as an
identity provider, including a check whether an internet user has voting privileges in a
given setup.

A full description of the implementation can be found in LiquidFeedsback's Work
report on Unified WeGovNow User Management (UWUM) development.

5.3. GeoKey and Community Maps

GeoKey provides a database-driven backend storage, together with a custom API that
allows two main tasks namely interaction with data (data creation, editing, deleting)
and the creation of projects which group data together. The latter is accessed via a
web-based project management interface. In addition to this functionality, an API is
also provided for user management, which is again enabled via a web-based frontend.
The GeoKey architecture allows the data store to be accessed by any frontend
application from the WeGovNow suite (web or mobile based) which can be
customised making use of the APIs provided.

A flexible and stylish participatory mapping frontend, Community Maps can visualise
data, compare information, and encourage conversation about the places which
matter. Designed using the latest web development technologies, Community Maps
offers a fast, reliable and intuitive interface. The display is clear, professional, and
engaging for all screen types.

The Community Map applications tools has been developed to make use of the
GeoKey public REST API and separation between GeoKey and Community Maps allows
for a user interface for project management (more technical) and another for data
collection/visualisation (intuitive and easy to use). This method hides the complexity
of the technology behind the minimalistic and modern approach for end-user
interaction. All information within Community Maps is stored in GeoKey, where the
API enables storage and retrieval of data via secure SSL connection.

GeoKey

GeoKey is a web based platform for participatory mapping and is the connecting point
between data collection on the one hand and data utilisation through the analysis and
visualization on the other hand.

GeoKey allows project administrators (in WGN this relates primarily to municipalities
but may also be applicable to key third sector organisations) to create bespoke maps
in which they can define the data structure required within different categories of
their choice. The type of data will differ depending on the category, symbolised by

 D3.5 Final release of WeGovNow platform prototype

56

icons that can be uploaded, and the type of data (fields) should be predefined by the
admins. The current field types available in GeoKey are:

● Text
● Numeric
● Date / Date & time / Time
● Selectbox
● Multiple select box

Thus, the following stages are required:

● Administrators create a project in GeoKey (see Exhibit 16). Once created,
administrators can edit the project settings (see Exhibit 17)

● Within the project, administrators create a new collection that will appear on
the map. They give this collection a name and (optionally) a description. You
can think of this as the name being the equivalent of the table name in a
database and the description a metadata description of what the table
contains (see Exhibit 18)

● The administrators then give a structure (“columns”) to the table – this can be
ANYTHING they like – driven by what the users need. So, any combination of
column types (date, number, lookup, multiple lookup, text and so forth) can
be used.

● The geographic extent for an individual map is then set so that end users access
the map at an extent that is relevant to local geography and context.

● Administrators can add additional settings to set the map permissions to any
of the following:

o All users can contribute. This includes anonymous contributions from
users, who are not logged in.

o All authenticated users. Users have to be logged in to contribute. Only
members of contributor groups can contribute. Only users, who are
members of a user groups that have been granted contribution
permissions, can contribute.

 D3.5 Final release of WeGovNow platform prototype

57

Exhibit 16: Project creation and custom fields.

Each project thus has its own set of categories (corresponding to layers on a GIS map)
and corresponding icons. The important thing is that the categories and the
information they contain are defined by owners of the project (i.e. the users of the
system) and created by the administrators to contain the information that the specific
group of users’ needs for their project. The variety of data that can be collected is
illustrated by going to our live site: https://communitymaps.org.uk/welcome

This approach gives WGN users - whether municipalities, other organisations or local
groups - the flexibility to create their own projects and decide what needs to be
mapped as a group, allowing them to focus on local interests and priorities.

Exhibit 17 : Project geographic extent and settings.

 D3.5 Final release of WeGovNow platform prototype

58

Exhibit 18 : GeoKey list of custom categories.

Community Maps

Once the project is live, users add data into the structure provided, using the
Community Maps web mapping interface (see Exhibit 19 and

Exhibit 20). In Community Maps, users can add new data points (see Exhibit 21 and
Exhibit 22), edit existing data or delete data they have contributed. They can also
upload media and add comments to the data points.

There is the option of an administrator being able to moderate the data on the
Community Maps site (via GeoKey) if required by the project. Further instructions on
how to contribute to a project can be found here:
http://help.communitymaps.org.uk/en/add-new-contribution.html

 D3.5 Final release of WeGovNow platform prototype

59

Exhibit 19 : List of projects on CM

Exhibit 20 : Display existing contributions for one project on CM.

 D3.5 Final release of WeGovNow platform prototype

60

Exhibit 21 : Add new contribution on CM. Geometry type definition, and categories.

Exhibit 22 : Add new contribution on CM. Fill the fields for the chosen category.

5.4. FirstLife

FirstLife is a map-based solution (see Exhibit 23, Exhibit 25) enabling users to interact
with five types of entities: places, events, news, stories, and groups.

 D3.5 Final release of WeGovNow platform prototype

61

Each entity is an aggregation of geo-referenced contents related to a specific
geographical unit or area (see Exhibit 24), at multiple scale: building, city block,
neighbourhood, district, city, etc.

Exhibit 23 : FirstLife map-based view: pie charts representing clusters of markers.

 D3.5 Final release of WeGovNow platform prototype

62

Exhibit 24 : FirstLife uses InputMap to collect location input from users.

Users can:

● Explore existing contents by opening the entity cards clicking on the markers or
selecting the element of interest in the wall

● Contribute to existing contents, by adding a new post or sub-entities to an existing
card

● Add new entities on the map.
The integration of FirstLife in the WeGovNow prototype platform is implemented in
terms of Angular 1.X release candidate 5 and Leaflet 1 release candidate. This version
is currently being ported to Angular 2 and Leaflet stable versions.

 D3.5 Final release of WeGovNow platform prototype

63

Exhibit 25 : FirstLife provides a map-based view and wall to explore crowdsourced
content. FirstLife implement a multi-dimension filtering system: time, tag, entity type

and categories.

The development of FirstLife within the scope of WeGovNow was focused on three
aspects:

1. To reach a level of maturity filling the gap with other WeGovNow components,
providing comparable performances, including basic features of other social
networks

2. To improve FirstLife accessibility as usability, considering that as map-based
application there are strong limitations

3. To provide WeGovNow shared map-based modules.
In terms of maturity of FirstLife and readiness for the upcoming trials, the platform
was completely rebuilt both backend and frontend to overcome performance issues
of the map-based interface, and to enable a fast, richer and reliable configurability of
the platform to support the pilots. Moreover, FirstLife was missing some basic features
which are not innovative but highly expected from users, such as:

● Share and export of views and entities via email, permalink and iframe
● List-based view with alphabetical and time-based ordering features, full text

search and filtering
● Calendar-based timeline, based on known granularities such as weeks, month,

etc.
● Bottom-up relations between entities, new “initiative” feature

In terms of accessibility and usability, FirstLife html was extensively fixed introducing
translation in attributes, and missing attributes such as “title” and “alt”. Many

 D3.5 Final release of WeGovNow platform prototype

64

elements and modules where completely redesigned to be more usable on mobile
devices, to lower views complexity, and to solve counterintuitive mechanisms.

The principal role of FirstLife as technology was to provide the common map-based
components. So far AreaViewer, LandingPage and InputMap are independent project
branched from FirstLife know-how, solutions and source code. Even though, these
projects are not strictly components of FirstLife, they were part of FirstLife
development tasks, and the reason to not integrate them as part of FirstLife was
specifically to enable their use within all other WeGovNow components.

5.5. ImproveMyCity

ImproveMyCity can stand both, with or without a map. However, using a map-based
UI to display the issues gives a more intuitive user experience to the end users and a
better overview when browsing issues. Users can easily select at any time - if they
prefer - a list or card based representation of the issues by clicking the appropriate
button. The information on both views is the same. But card-display focuses mostly
on photos. In any case, depending of personal preference different layout modes are
supported. Different views are displayed by Exhibit 26: on the left is the list view and
on the right, is the card view.

Each issue contains further details and more importantly, the citizens are able to see
the timeline of each issue. When it is submitted (and by whom according to the
settings), who (either responsible employee or Department name), when and what
action has been taken as shown in Exhibit 27. Submitting a new issue by registered
users is a very quick and easy procedure, as displayed in the form in Exhibit 28.

It should be noted that users are able to edit their own issues ONLY if the status of
their issue has not yet changed by the administrators. This allows a time window to
correct typos, add new photos, etc. The business logic (e.g. when an issue is editable,
when it becomes public, whether commenting is allowed or when comments are kept
privately between issuers and Municipality, who gets notified and when and many
other actions and rules) is set graphically in the backend / administration side.

 D3.5 Final release of WeGovNow platform prototype

65

Exhibit 26 : Browsing on existing issues. Different views, same content and
information. Google Maps are replaced by AreaViewer (OSM based) in the final

prototype.

Exhibit 27 : Issue details (showing also commenting and voting functionality) and
detailed timeline that promotes transparency and direct citizens – Municipality

interaction. Google Maps is replaced with OSM based map

 D3.5 Final release of WeGovNow platform prototype

66

Exhibit 28 : Reporting a new issue in WeGovNow with ImproveMyCity. GoogleMaps
are removed and in the final prototype, InputMap integrated and is being used to

post end edit issues.

ImproveMyCity is not a monolithic application. It is a highly modular application that
can expand or reduce the complexity and features on demand. More specifically, it is
composed of:

● Core component
● Map module
● Filtering module
● Search plugin
● Notifications plugin
● Categories extra fields plugin
● Reporting expansion
● Workflows expansion

 D3.5 Final release of WeGovNow platform prototype

67

Plus the following which are developed specifically for WeGovNow

● UWUM plugin (connects to UWUM OAuth2.0)
● WeGovNow NavigationBar module (displays the common navigation bar)
● WeGovNow IMC Lite template (the Bootstrap based Material Design theme)
● OTM notifier plugin (listens to triggered actions and sends logs to OnToMap

Logger)
● AreaViewer module (to use AreaViewer in any template position)
● InputMap custom field (to allow using InputMap as field to any form)

Each and every module/plugin has its own settings and preferences, but they operate
and communicate with each other flawlessly. The following exhibit (Exhibit 29) shows
some of the settings that are set graphically by the administrator.

A municipality’s organisational diagram is easily imported no matter how complex it
is. For each department, office and generally any hierarchical level, it is feasible to
define permissions. Each employee belongs to one or more groups/departments and
inherits its permissions. Each department (e.g. Technical Department) can have one
or more corresponding categories (roads, parks, etc.) and its assigned officers get
notified automatically according to the rules. All these parameters are already set for
San Dona instance, and Torino and Southwark will follow.

Exhibit 29 : ImproveMyCity is highly modular and parametric to cover different
Municipality needs according to their workflow and complexity.

 D3.5 Final release of WeGovNow platform prototype

68

Exhibit 30 : ImproveMyCity permissions according to the Municipality Hierarchy.
“Who does what, who sees what”.

Administrator employees in ImproveMyCity are facing a very simplified User Interface
without hassles and complexities. They see only the issues that concern them and the
only actions that they take is to change a dropdown menu and type a descriptive
response. All others (notifications, logs, updates, etc.) are handled automatically by
the application.

Exhibit 31 : ImproveMyCity triggers most actions automatically reducing the effort of
employees to the bare minimum.

 D3.5 Final release of WeGovNow platform prototype

69

For a detailed explanation of the backend/administrator side of ImproveMyCity, visit
https://wegovnow.improve-my-city.com/handbook/administration/general.html

Keeping the same modular design approach, every new module and plugin follows the
official Joomla guidelines and best practices. For example, the path to certificate (pem
file), callback URL, client iD, and every other parameter needed to communicate and
integrate UWUM are all set graphically in the backend as depicted in the following
Exhibit 32, making the setup a very friendly process.

Exhibit 32 : Login UWUM auth plugin has its own GUI settings.

The real added value is that we provide to the thousands of power-users of the Joomla
open source community, ready solutions that they could use immediately to their web
applications and be connected to UWUM authentication server, send actions to
OnToMap Logger, display the unified WeGovNow Navigation Bar and use AreaViewer
and InputMap and thus become part, as future external components, of the
WeGovNow platform.

All these Joomla compatible plugins, modules and fields could be installed the same
way as any other free or commercial Joomla extension. The next step is to package
and make them available to Joomla Extension Directory (JED) and become available to
million of users that are using the Joomla CMS. The benefits are two-fold. On one hand
we promote WeGovNow to a huge community, on the other hand we give out-of-the-
box technical solution for easy integration. The latter would also help to further extend
WeGovNow even when the project is over.

ImproveMyCity: Actions taken towards accessibility

ImproveMyCity on final prototype also includes accessibility fixes and updates, based
on suggestions and comments that reported by Funka. Some of the major

 D3.5 Final release of WeGovNow platform prototype

70

implementations towards a more accessible user experience that took place in
ImproveMyCity are.

Conformance to WCAG2.0 AA guidelines

Conformance to WCAG2.0 level AA is a time-consuming procedure and demands a lot
of effort. It concerns not only the core IMC but also all IMC modules, plugins, fields
and of course the theme. The result of this effort is to pass most of the accessibility
audits as set by Lighthouse 2.3.0 of the Google Chrome development tools with a total
score of 94/100. Still there are more to be done, such as colour contrast and correct
the dynamic filtering inputs and checkboxes. Conformance and best practices
appliance is an ongoing work that will continue. At the time of this writing (M21) the
following seven audits are passed:

Elements Use Attributes Correctly

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● [accesskey] values are unique.
● <audio> elements contain a <track> element with [kind="captions"].
● Image elements have [alt] attributes.
● <input type="image"> elements have [alt] text.
● No element has a [tabindex] value greater than 0.
● Cells in a <table> element that use the [headers] attribute only refer to other

cells of that same table.
● <th> elements and elements with [role="columnheader"/"rowheader"] have

data cells they describe.

ARIA Attributes Follow Best Practices

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● [aria-*] attributes match their roles.
● [role]s have all required [aria-*] attributes.
● Elements with [role] that require specific children [role]s, are present.
● [role]s are contained by their required parent element.
● [role] values are valid.
● [aria-*] attributes have valid values.
● [aria-*] attributes are valid and not misspelled.

Elements Describe Contents Well

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● The page contains a heading, skip link, or landmark region.
● Document has a <title> element.
● <frame> or <iframe> elements have a title.
● Form elements have associated labels.
● Presentational <table> elements avoid using <th>, <caption> or the [summary]

attribute.
● <object> elements have [alt] text.

 D3.5 Final release of WeGovNow platform prototype

71

● <video> elements contain a <track> element with [kind="captions"].
● <video> elements contain a <track> element with [kind="description"].

Colour Contrast Is Satisfactory

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● Background and foreground colours have a sufficient contrast ratio.

Elements Are Well Structured

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● <dl>'s contain only properly-ordered <dt> and <dd> groups, <script> or
<template> elements.

● Definition list items are wrapped in <dl> elements.
● [id] attributes on the page are unique.
● Lists contain only elements and script supporting elements (<script> and

<template>).
● List items () are contained within or parent elements.

Page Specifies Valid Language

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● <html> element has a [lang] attribute.
● <html> element has a valid value for its [lang] attribute.
● [lang] attributes have a valid value.

Meta Tags Used Properly

● Screen readers and other assistive technologies require annotations to
understand otherwise ambiguous content.

● The document does not use <meta http-equiv="refresh">.

Make ImproveMyCity keyboard friendly

Applying some of the best practices of Design4All approach, ImproveMyCity has
become more friendly for people using only the keyboard for browsing. The following
Exhibit 33 depicts the “Skip-to-content” link that appears when user presses the TAB
key in the keyboard. Also, links are outlined with a highlighted ring to help visually
impaired users to focus better.

 D3.5 Final release of WeGovNow platform prototype

72

Exhibit 33 : Applying best practices for accessibility in ImproveMyCity.

5.6. LiquidFeedback

The overall function of LiquidFeedback within WeGovNow is opinion formation
consisting of a deliberation process and a voting phase to determine a collective
preference (Exhibit 34).

Exhibit 34 : The LiquidFeedback proposition development process.

Citizens can start initiatives (proposals) and seek support among their fellow citizens
using the input map provided by FirstLife (partner UniTo) and the new WYSIWYG
editor (rich text editor) of LiquidFeedback (Exhibit 35). Other citizens can suggest
improvements or start alternative initiatives.

 D3.5 Final release of WeGovNow platform prototype

73

Predefined rules and timings ensure that plans on decision processes are made public
in time. Decisions are made by recorded vote only, and all voting-relevant data in
LiquidFeedback is made available to all participants in both human– and machine–
readable form. This enables a transparent decision-making process and ensures that
participants can verify the voting procedure.

.

Exhibit 35 : Creating a New Initiative in LiquidFeedback with WYSIWYG Editor and
WeGovNow InputMap.

In the context of WeGovNow, LiquidFeedback already added geospatial functionality
and published a core update as a prerequisite for the integration (see “Work report
on pgLatLon in Appendix 6.5, an alternative to PostGIS”and “Second work report on
extending the LiquidFeedback Core” in the appendix). The adoption of material design
is in progress.

For prototype 2, LiquidFeedback focused on finalizing the integration features and
check the feasibility. The input map was integrated, a new rich text editor was added,
and LiquidFeedback's UWUM server was extended with an application discovery
endpoint providing access to the list of both static and dynamically registered
applications. The finalization of the frontend will be the central aspect of prototype 3.

 D3.5 Final release of WeGovNow platform prototype

74

For prototype 3, LiquidFeedback finished adopting material design. However, the
layout is still subject to minor changes, e.g. based on feedback from experts, such as
partner Funky for accessibility, and end users’ comments.

All previous developments regarding functionality were incorporated in the
LiquidFeedback Core Release 4.0.0 which was published under the MIT/X11 open
source license on 2017-09-29. The release includes:

1. Geospatial support. Units, areas, initiatives, suggestions and member data
structures have been extended to support storage of related geospatial data
using the PostgreSQL extension pgLatLon.

2. Dynamic admission quorum. The previous issue admission system with quora
based on subject area memberships has been replaced. The enhanced issue
admission system achieves a better user experience as quora are based
automatically on the actual number of active users without the need for users
to manually choose subject area memberships. Optionally, the dynamic
adaption of the quorum can also take the actual number of open issues into
account. This can prevent LiquidFeedback from being flooded with too many
issues in discussion phase at the same time and thus improves the ability to
handle very large participation groups. More information about the underlying
algorithms has been published in the Liquid Democracy Journal.

3. Absolute issue and initiative quora. The possibility to demand a configurable
absolute number of supporters has been added in addition to the quora based
on user activity.

4. Support for integrated OAuth 2.0 server. Data structures for a fully fledged
OAuth 2.0 compatible authentication server have been added. This enables
single-sign-on solutions for third party applications.

5. Usage of PostgreSQL's JSONB datatype to store member profile information
and settings. The storage of member profile information and settings has been
updated to use JSON documents. Therefore, it is possible to use arbitrary
member profile fields depending on the needs of different application
scenarios.

6. Revised snapshot system. The snapshot system has been revised. The
possibility to store intermediate snapshots for a defined period of time has
been added. As a prerequisite for the dynamic admission quorum, snapshots
may contain more than one issue now. Additionally, required supporter counts
are stored per issue.

7. Extended event logging. The event logging has been extended to record most
user and system activities. This allows creation of more comprehensive
timelines.

8. Revised system to store information about accepted terms of use. An explicit
storage facility for information about accepted terms of use or similar legal
rules has been added.

 D3.5 Final release of WeGovNow platform prototype

75

 D3.5 Final release of WeGovNow platform prototype

76

Exhibit 36 : Area view in LiquidFeedback (example from the Torino instance).

Exhibit 37 : Issue view of finished issue in LiquidFeedback (example from the Torino
instance).

 D3.5 Final release of WeGovNow platform prototype

77

5.7. Enhanced User Profile Management (module of Trusted
Marketplace)

Enhanced User Profile Management is currently part of the Trusted Marketplace (TM)
component and its purpose is to provide a single entry-point to user’s preferences and
other data (such as user interests) across WeGovNow platform. Enhanced User Profile
Management extends the profile settings in UWUM (see Exhibit 38), including the
possibility to edit all information stored about the user by all WeGovNow components.
Moreover, it connects to social networks on user consent in order to get extra
information that could help to better matchmaking suggestions.

Exhibit 38 : The Enhanced User Profile Management page, extending the UWUM
profile settings.

User Management, besides basic info, it includes other sections such as:

● Work & Education (see Exhibit 39)
● Personal interests (see Exhibit 40)
● Social network accounts (see Exhibit 41)

 D3.5 Final release of WeGovNow platform prototype

78

It should be noted that under the hood, the system provides more than 60000
predefined values which are selected automatically while user types at certain fields.
Users are also able to type free text.

Exhibit 39 : Section of user's “work and education”.

Exhibit 40 : Section of user's interests.

Social Networks account

Through the Enhanced User Management users are able to link into their user profile
various social networks as depicted in Exhibit 41.

The purpose of linking social accounts is to collect more information about the users
automatically and thus enhance the matchmaking mechanism. At any time, users
are able to unlink their accounts.

 D3.5 Final release of WeGovNow platform prototype

79

Exhibit 41 : Link to social accounts.

Social networks linking could be enabled or disabled per implementation instance.

5.8. Trusted Marketplace

The Trusted Marketplace is designed and implemented from scratch according to the
requirements and needs of the pilot use cases. Besides the matchmaking of users-to-
events and users-to-users and the handling of personalised notifications (based on the
match-making suggestions), Trusted Marketplace also incorporates features that are
not available by the other core components. These features include:

● Enhanced user profile management

● Mechanism to handle demands and offers.

● Graphical representation of the personalised timeline by aggregating
OnToMap Logger user actions/activities in a friendly interface.

● A friendly dashboard for easy overview of all the above.

The Trusted Marketplace matchmaking engine receives input from three different
sources.

1. Indirectly from any other core component (including the “Offers & Demands”,
part of Trusted Marketplace)

2. Directly from the users through the “Dashboard” and their personal profile,
preferences and interests that are explicitly declared by them.

3. By social networks, on user’s consent, through the “Social Media Linker &
Collector” of Trusted Marketplace.

Based on the above, the Trusted Marketplace will notify users on actions and events
that will match their preferences and interests.

The other major role of Trusted Marketplace is the implementation of “Offers &
Demands”. The following Exhibit 42 depicts its integration with InputMap when users
are posting a new offer.

In addition, Trusted MarketPlace is linked with OnToMap. The following Exhibit
(Exhibit 43) displays the personalized timeline of user actions as pulled from

 D3.5 Final release of WeGovNow platform prototype

80

OnToMap. Currently, user actions of TM are pushed to OnToMap, and aggregated
actions from every component are displayed inside TrustedMarket (pull actions from
OnToMap).

Exhibit 42 : Trusted Marketplace integrates InputMap already

 D3.5 Final release of WeGovNow platform prototype

81

Exhibit 43 : Personalised Timeline: Trusted Marketplace integrates with OnToMap

5.8.1. Next steps towards pilot platforms implementation

The next major step concerning Trusted Marketplace towards pilot platform
implementation (due to Feb 2018) is:

To separate “Offers & Demands” from the rest features of TMP and actually
create a new component based on i) the Enhanced User Profile and ii) the
Matchmaking mechanism under the name “WeGovNow Dashboard” or simply
“Dashboard”.

The separation will make clearer the purpose of the Trusted Marketplace and also will
allow users to access their profile under a common WeGovNow dashboard for all core
components.

Trusted Marketplace and Dashboard should be treated as separate components:

● Trusted Marketplace will contain
o Offers & Demands

● Dashboard will contain:
o The enhanced user profile
o The matchmaking mechanism

 D3.5 Final release of WeGovNow platform prototype

82

Exhibit 44: Updates on Navigation Bar to support the Dashboard for the pilot
platforms.

The Trusted Marketplace will appear in the Navigation Bar, while the Dashboard
should be accessible as dropdown item under the “my user account” button on the
right corner. The proposed position in the menu makes sense since the Dashboard will
be accessible only to registered users.

Trusted Marketplace new layout and functionality

Based on London stakeholders meeting (M21) outcomes, it has been decided to let
“Offers & Demands” to handle only goods (free items). Offering and demanding
services (such as volunteering work) should be handled by external authorised
associations since it is not possible to be controlled by the local authorities.

The home page of Marketplace should always contain clear information of its purpose.
There will be two big buttons (or page divided in two equal parts). The first button is
named “Goods” and the second button is named “Services”. A disclaimer, terms of use
and further legal details could be defined per pilot platform.

The following Exhibit 45, depicts the development instance of the new layout of
Trusted Marketplace as it is currently envisaged.

Exhibit 45: The development instance of the new layout of TMP (to be finalised by the
time of piloting phase based on stakeholders meeting outcome).

 D3.5 Final release of WeGovNow platform prototype

83

Marketplace for Goods (free items)

This is very similar to the existing (Prototype 3) version of offers & demands, having
the same interface but without the user profile (which will become WeGovNow
Dashboard).

Users do not need to be logged to see the existing offers/demands. Only registered
users are allowed to post new offers/demands (and edit or delete their own posts).
An offer/demand is removed by the system automatically when date is due
(notification is sent to the owner) or when the owner deletes it.

All offers/demands are published only after moderation. Moderation will be a minimal
backend interface, listing all offers/demands next to a radio button
(publish/unpublish) per record and be accessible only by the local authority
moderator(s).

Marketplace for Services

“Services” button will lead to a page quite like ImproveMyCity’s interface (e.g. items
list on the left, map on the right).

It will contain the list of approved (after moderation) associations, organisations,
timebanks, small charities, and others, that support volunteering work, etc.

The map, will display markers denoting their address (if any).

Each record contains:

● Title
● Register number
● Description
● Photo(s)
● Contact details
● Link to external site
● Tags / Labels
● Attached Documents

Association, Organisations, Charities, etc, will register themselves. The local
authorities will be responsible to approve their registration in order for the new post
to become publicly available. To verify a new entry, the local authorities will have the
possibility to check the registration number or alternatively to check the attached
documents (e.g. in the case of small charities that might not have registration
number). Moreover, for convenience, an automated notification will inform the
moderators that a new registration is posted.

Concluding, the next actions to be implemented for the pilot platforms, in order to
support the above plans, are the following:

1. Separate enhanced user profile & matchmaking (dashboard) from offers &
demands (trusted marketplace)

 D3.5 Final release of WeGovNow platform prototype

84

2. Split offers & demands in i) “Goods” and ii) “Services”
3. Implement the mechanism to allow associations and organisations to post and

list their services in Marketplace.
4. Implement the moderation mechanism for both “goods” and “services” (the

backend administration interface)
5. Redesign the UI to match all the above

 D3.5 Final release of WeGovNow platform prototype

85

6. Description of platform services
The core features of WeGovNow are meant to support the integration between
components. A set of core features is provided by an extension of stand-alone
components, while other core features required the definition of new modules. In this
regard, as indicated in Exhibit 9 and Exhibit 10, the first prototype of WeGovNow does
not include some new core features which are currently being developed.

The WeGovNow core thus provides features essential for realising the seamless
integration of individual WeGovNow components:

● Unified Authentication System: provides functionalities concerning user
registration, authentication and authorization, as well as single sign-on.

● Application Discovery Service: is an API service providing the list and details of
currently available components in a WeGovNow instance.

● Style Service: is an API service providing WeGovNow style sheets dynamically to
the components, it is used to retrieve the instance customization such as colours,
fonts, etc.

● NavigationBar: is an API service providing the description or the HTML source of
WeGovNow navigation bar, including the button tabs to the current available
components and the reference to the user profile.

● User data storage: LiquidFeedback provides a data store for global user settings
and public user profile information which is accessible to all registered WeGovNow
components for storage and retrieval.

● Centralised Activity Logger: provides centralised data logging within the
WeGovNow platform and data integration aimed at integrating the knowledge
about users and about geographical data shared in the platform. Data integration
is performed by translating information items, expressed in the terminology used
by the specific front end applications of the wegovnow platform, to a unified
format, defined by the OnToMap Ontology. In this way, data can be reused cross-
application.

● Linked Open Data and Crowdsourced Data endpoint: is a semantic endpoint to
retrieve the Linked Open data generated from the Open Data of the municipalities
and the user activities within a WeGovNow instance.

● InputMap: is an embeddable web map to collect spatial input (point based
references) and references to existing entities in OnToMap.

● AreaViewer: is an embeddable web map to visualise summary information
extracted from OnToMap (see section 5.1).

● TileServer: a vector tile server providing geographical entities from official open
data and OpenStreetMap, in protobuf format (PBF).

● Enhanced User Profile Management: is a module of Trusted Marketplace,
extending user preferences with skills, education, social network accounts and the
management of user’s personal data

 D3.5 Final release of WeGovNow platform prototype

86

● Geo-Spatial Data Repository (GSDR) of WeGovNow for Quality Assessment: is a
web service for quality assessment/improvement of data provided and generated
by the WeGovNow platform.

As mentioned earlier, the core features are provided by existing and new components
specifically developed for WeGovNow.

Exhibit 46 : WeGovNow core features provide the environment to integrate modular
components accordingly to the specific needs of each WeGovNow instance.

Core features are used by modular components (see Exhibit 46) to:

● Establish connections with other WeGovNow components
● Provide cross-component features
● Unify the appearance to the rest of a WeGovNow instance
● Synchronise components

As any other modular component, core features themselves are optional as far as their
non-essential functionalities are concerned: if a core feature is not fully enabled in a
specific instance of WeGovNow, only its critical functionalities will be available. In the
following subsections, the WeGovNow core is described in more detail.

6.1. Authentication Service

For reasons of interoperability and security, WeGovNow aims to create an
implementation that is fully compliant with the OAuth 2.0 Authorization Framework
as described in RFC 6749, but extended in such way that it allows for secure user
authentication following the OAuth 2.0 Authorization Code flow (see Exhibit 47).
Special security considerations were taken into account, for instance client identity
verification (through X.509 certificates) to repel authorisation code substitution

 D3.5 Final release of WeGovNow platform prototype

87

attacks. For further security considerations refer to Consolidated System Architecture
D3.1, Section 2 and Section 5.

Exhibit 47 : OAuth 2.0 Authorization Code flow.

RFC 6749 defines several roles (“authorisation server”, “client”, and “resource
server”). The UWUM component as implemented by LiquidFeedback takes the role of
the “authorisation server”. Other WeGovNow components will take the role of
“clients” but may also act as “resource server” for other components. This allows
other components to interact with each other, while UWUM is responsible for user
authentication and authorisation.

To register a new client, it is required to address the UWUM integration checklist (see
annex 2, Integration checklist). UWUM provides two methods of client registration:

● registering clients through the municipality (or their technical administration) or
an organisation running an installation of WeGovNow,

● registration of any other (“dynamic”) client on a per-user basis by each user who
wishes to use that client to access WeGovNow (machine accessibility).

Manual client registration by the municipality is only suitable for those clients that are
known at the time of deployment of a WeGovNow instance.

Currently, it is possible to use UWUM with an invite code, in the future it shall be
possible to create non-verified accounts using an email registration, Google, Facebook
or OAuth 2.0 compliant authentication server. Non-verified accounts must not have
any voting right or be counted in any other quantification until they are verified.

 D3.5 Final release of WeGovNow platform prototype

88

6.2. Application Discovery Service

The Application Discovery Service provides information about the available software
modules in a WeGovNow instance, as defined in the configuration of the platform.
The Application Discovery Service role is to enable the dynamic configuration of active
WeGovNow software components: to enable cross-components features accordingly
to the availability of other services, to provide navigation active components can
“discover” other enabled components.

New components can be included in a WGN instance and in WGN environment in
general following the Integration Checklist (see Annex 2).

The Application Discovery Service is available via a REST API endpoint for
authenticated clients (Exhibit 48). For technical details and future development of the
Application Discovery Service see Annex 2 to D3.1 WeGovNow Consolidated
Architecture.

An application discovery endpoint has been added for prototype 2.

Exhibit 48 : Application discovery.

 D3.5 Final release of WeGovNow platform prototype

89

Considering the extent of the existing WeGovNow applications, using application
discovery might create more effort for every component owner than possible benefit.
However, the existing UWUM endpoint for application discovery returns a list of
applications along with their registered base URLs and provides a method for
application discovery in WeGovNow systems with a growing number of applications.

Dynamically registered applications (dynamic clients for OAuth 2.0) are fully
supported (registration with X.509 TLS client certificate authentication or DNS TXT
records, see Section 2.4.2 of the UWUM Work Report from December 12, 2016). These
dynamically registered applications are included in the list of registered applications
returned by the application discovery endpoint for the currently logged-in user.
Additional information on provided protocols and services may either be retrieved
through a yet-to-be-defined well-known URL constructed from each application's base
URL, included in future versions of the UWUM database, and/or collected by other
applications such as OnToMap.

6.3. Style Service

An instance of WeGovNow includes style customization, for instance colours of a
municipality, fonts, icons, etc. The style service was introduced as part of UWUM
(Unified WeGovNow User Management) specifically to provide the style
customization of the current instance of WeGovNow.

The Style Service already provides a material design colour theme. As of now only
LiquidFeedback honours the colour theme. It planned that all other components also
honour the colour theme. Future versions may also include fond and other style
information.

For technical details and further development of the Style Service see Annex 2 to D3.1
WeGovNow Consolidated System Architecture.

6.4. NavigationBar Service

To integrate all WeGovNow applications in such way that they look and feel like a
single application, all WeGovNow applications share a common WeGovNow
navigation bar (see Exhibit 49).

 D3.5 Final release of WeGovNow platform prototype

90

Exhibit 49 : NavigationBar is dynamically retrieved from UWUM with the current
setup of the platform instance. There is also a responsive version depicted on the

right

The navigation endpoint of the UWUM server returns this navigation bar to be
included by each WeGovNow application. This way, modifications to the navigation
bar can be made at a central place without the need to change every single
application. Either a login button or the user name with a link to a user page (where
logout is possible) is included in the navigation bar, depending on whether an access
token is provided when calling the endpoint.

6.5. User data storage

A key factor to provide a good overall user experience is to keep consistent user
information across WeGovNow components: to use the latest information regardless
to where user provided in the profile settings or in a component setting.

In order to enable the sharing of user information, UWUM provides a user data
storage, which is the “single point of truth” about user’s information. For instance,
user data storage can be used to keep and update the email address for notifications,
the preferred language, the accessibility preferences.

6.6. Centralised User Profile

The WeGovNow platform will provide a centralised user profile repository to its
components where user profile information of common use among the platform are
collected. The centralised user profile will be an extension of user profile settings of
UWUM component. Currently, the user settings in UWUM enable users to manage
their personal data, authentication details and notification settings. The user settings

 D3.5 Final release of WeGovNow platform prototype

91

are accessible only through LiquidFeedback user settings (see Exhibit 50),
TrustedMarketplace component will provide an extended interface to the user
settings (see section 6.11).

Exhibit 50 : UWUM user settings.

The centralised user profile has the following main functions:

● Single synchronisation point for common user information (such as firstname,
lastname, displayname, email, etc.) avoiding the multiple request of user profile
data;

● Propagating the updates of users’ profile across WeGovNow platform (Exhibit 46)
avoiding inconsistent information;

● Increasing the integration of WeGovNow components providing a mechanism to
share user’s information platform wide.

The user profile data fields and their type will be configurable per installation. These
data fields can be of standard types such as text, number, image, location or complex
JSON data fields. Standard type fields will be automatically editable by UWUM’s built
in editor but can also be updated using the API. Complex JSON data fields need to be
updated using the API by the corresponding component(s) using such fields.

The management of the user profile will be extended in TrustedMarketplace including
the reference to the information about the user stored in UWUM, the reference to
user settings in each application, the accessibility settings (see next section), and
global setups about the management of user information in WeGovNow.

 D3.5 Final release of WeGovNow platform prototype

92

6.7. Crowdsourced and Linked Open Data endpoint

The OnToMap endpoint supports data integration within the WeGovNow platform.
The idea is that of having a single point of access to the geographical information
available in an instance of the platform, in a unified format and representation
language that enables the applications to retrieve and present shared data regardless
of their origin. Specifically:

1. OnToMap supports the integration of heterogeneous Open Data sources,
which are stored into the platform in a Linked Data format supporting the
semantic exploration of information (see below). We have acquired the Open
Data from Torino (enriching them with Open Data provided by the Geoportale
of Piedmont Region), San Dona’ Di Piave and London Southwark, concerning
services available in the towns, transportation systems, facilities, and the like.
In the next future, further Open Data from the three cities will be added; e.g.,
aggregated statistical data concerning the economic tissue in San Donà di
Piave.

2. OnToMap supports the integration of data shared within the platform by the
WeGovNow applications, which can publish the users’ activities concerning the
creation, revision, etc., of data items through the OnToMap Logger. As this
type of information is based on the observation of events concerning user
activities, it is stored in a log as a set of events mapped to the common
terminology provided by OnToMap. This aspect is described in the section
about the OnToMap Logger.

The integration of heterogeneous data and their representation in a common format
is based on a semantic knowledge representation layer that reconciles data
representational and conceptual heterogeneity.

Exhibit 51 : OnToMap architecture.

The OnToMap Ontology (see Exhibit 51) is a knowledge representation layer that
makes it possible to:

 D3.5 Final release of WeGovNow platform prototype

93

● Integrate heterogeneous Open Data and manage it as Linked Data. As reported in
http://linkeddata.org/, “Linked Data” is about using the Web to connect related
data that wasn't previously linked, or using the Web to lower the barriers to linking
data currently linked using other methods." Heterogeneous data integration has
been traditionally carried out by exploiting domain ontologies representing the
types of information to be described at the conceptual level1.

● Provide a dictionary, shared in the platform, for mapping the concepts used in the
domain conceptualizations adopted by the WeGovNow applications to a unified
terminology for cross-application data sharing.

● Describe semantic relations among information items to express spatial relations,
different levels of abstraction in the description of entities and thematic relations.
This approach enables a semantic and geospatial exploration of the information
space.

The OnToMap Ontology is defined using the OWL Web Ontology Language
https://www.w3.org/OWL/. We have developed the ontology by importing standard
ontologies for the representation of geographical data (e.g., the definition of
SpatialObject with geometry and feature) and by taking into account the categories of
information available in the Open Data which were provided to us by the
Municipalities participating in the WeGovNow project. The introduction of high-level
concepts and of subclasses enabled us to map Open Data to ontology concepts at
different granularity levels, depending on the degree of specificity provided from the
Open Data sources. For instance, the Open Data from Torino city distinguish several
types of businesses (bars, restaurants, etc.). Differently, the Open Data from San Dona’
di Piave describe some types of businesses in a more general way (e.g., Logistics,
Manufacturing, etc.). We thus defined concepts at different levels of specificity and
accommodated the Open Data accordingly. Notice also that the semantic
representation of relations among ontology concepts enabled us to relate different
types of concepts, including initiatives, issues and other information categories
handled by some WeGovNow applications, such as LiquidFeedback, which have
geographical objects as their objects. While this type of information is not available in
the Open Data provided by the Municipalities, it concerns the logging of user activities
in the platform instances.

The latest version of the OnToMap Ontology can be downloaded in OWL format at the
following URL: http://OnToMap.eu/ontology/. The ontology includes about 100
concepts.

1 For instance, see see (i) Fonseca, F. T. “Using ontologies for geographic information
integration” Transactions in GIS, 2002, and (ii) K. Janowicz, S. Scheider, T. Pehle, and
G. Hart. 2012: Geospatial Semantics and Linked Spatiotemporal Data – Past, Present,
and Future. Semantic Web - On linked spatiotemporal data and geo-ontologies

 D3.5 Final release of WeGovNow platform prototype

94

The following Exhibit 52 shows a portion of the current version of the OnToMap
ontology, focusing on concept “SchemaThing”, the root of the taxonomy concerning
geographical information.

“SchemaThing” specifies the main data structure for geographical information items.
It is related to concept “Revision”, in order to comply with the possibility of having
multiple versions of data, modified at different times by different users, and to
concept “Provenance” in order to support the retrieval of the provenance of the
current version of data. In turn, each revision of a geographical data item is related to
its own provenance, so that the revision history of data can be reconstructed.

Exhibit 52 : Portion of the OnToMap Ontology.

The OnToMap Ontology supports a more or less tightly coupled data integration, in
order to allow both the mapping of stable domain conceptualizations, based on a fixed
set of data categories (e.g., FirstLife’s one), as well as the integration of dynamic
conceptualizations, similar to tag-based systems. “SchemaThing” has the following
sub concepts:

● “AtomicThing”, which represents geographical information based on dynamic data
categories, such as those used in GeoKey/CommunityMaps. It has a
“hasCategoryName” property, which can be used to associate information items
to categories, modelled as tags. This approach supports a free type of data tagging,

 D3.5 Final release of WeGovNow platform prototype

95

which does not require consistency checks when adding new categories to a
domain conceptualization.

● Concepts for the representation of geographic information based on stable
domain conceptualizations, which can be mapped to OnToMap Ontology:

o “Event”, which represents events, associated to their temporal extension
(see the relations with concept “Instant”, which models temporal points),
and to the “Places” in which they are held.

o “Place”, which represents all the geographical items having a geometry
representing their geographical extension.

Regarding this work, POLITO has collected, analysed and prepared for acquisition in
OnToMap the Open Data provided by the cities of Torino, San Dona’ di Piave, and
Southwark. UNITO has carried out the design and development of the Software (OWL
ontology, OnToMap component with Logger).

Representation and storage of Open Data

The Open Data integrated in OnToMap is mapped to the ontology concepts and it is
represented as Linked Data, as RDF (Resource Description Framework2) triples. This
makes it possible to exploit standard tools for browsing the ontology and for retrieving
geographical information items.

As shown in Exhibit 51, OnToMap stores Linked Data in the Open Data Store: this is a
triple store, i.e., a specialized tool for managing and querying RDF datasets. The
current implementation of OnToMap exploits the Parliament triple store3, which
supports GeoSPARQL queries4.

OnToMap exploits the Apache Jena ontology API5 to perform GeoSPARQL queries on
ontology concepts. The result of a query is a set of RDF triples representing
geographical information items. This set of triples is translated to an external GeoJSON
format to make data directly usable by WeGovNow applications for map-based
presentation.

The mappings between the data categories defined in the Open Data Sources and the
ontology concepts are aimed at translating external data items to sets of RDF triples
to be loaded in OnToMap Open Data Store. As Open Data sources typically use
standard data representations, open source mapping tools can be found for doing this
work without defining ad-hoc software. For instance, for converting shape files to RDF
data we use GeoTriples (https://github.com/LinkedEOData/GeoTriples)

2 https://www.w3.org/RDF/
3 http://parliament.semwebcentral.org/
4 http://www.opengeospatial.org/standards/geosparql
5 https://jena.apache.org/documentation/ontology/

 D3.5 Final release of WeGovNow platform prototype

96

Data retrieval API

The interaction between OnToMap and the other WeGovNow applications, regarding
data retrieval and semantic data representation, is managed through the OnToMap
Logger API specified at https://OnToMap.eu/, which returns results as a JSON object.

The API can be used to navigate the common data structure defined by the OnToMap
Ontology and to retrieve the Open Data provided by the OnToMap Open Data Store,
as well as the data crowdsourced by WeGovNow applications, in the unified
terminology and format provided by the OnToMap Ontology. Specifically:

● The API supports the exploration of the concepts and relations stored in the
OnToMap Ontology. It makes it possible to retrieve the root concept of the
ontology, the list of concepts, the concepts related to a specific concept C, and so
forth. This type of information makes it possible to discover how the ontology is
shaped (concepts and relations) directly from the application, via http. It thus
represents an entrypoint useful to retrieve metadata about the knowledge that is
represented. While the structure of the ontology could obviously be analysed by
downloading the owl document describing it, this might be error prone (suppose
that the ontology has been changed but this was not clearly reported in the
configuration information). In contrast, the interactive entrypoint offered by
OnToMap makes it possible to provide detailed and up-to-date information about
the ontology structure in use.

● The API can also be used to retrieve information about the instances of a concept
C, which can be expressed either in the terminology of the WeGovNow application
(in which case OnToMap translates C to the corresponding concept of the
OnToMap Ontology), or directly in the OnToMap Ontology format. Depending on
the filters used in the query, the retrieved instances can belong to the Open Data
and/or to the data crowdsourced by the WeGovNow applications: the information
items retrieved by applying the Open Data filter are GeoJSON objects describing
geographical information (specific restaurants, etc.); the information items
retrieved by applying the croudsourcing filter are both geographic items and
instances of other types of information, such as issues, pushed to the OnToMap
Logger by the WeGovNow frontend applications (e.g., LiquidFeedback,
ImproveMyCity). The API supports filtering the information items to be retrieved
by geographical area and/or temporal validity, and/or data source (e.g., Open Data
belonging to a certain source, crowdsourced data). The information items
returned by the API are, by default, the most recent versions of the data available
to OnToMap, and they are represented as GeoJSON “Features”6.

The data retrieval API is fully developed and tested with the WeGovNow applications.

6 See http://geojson.org/geojson-spec.html#feature-objects.

 D3.5 Final release of WeGovNow platform prototype

97

6.8. User’s Activity Logger (OTM logger)

UniTo has developed the OnToMap Logger. The OnToMap Logger is a centralised
collector of the history of actions performed by WeGovNow users by interacting with
the WeGovNow applications. The goal is that of achieving a unified perspective on
user behaviour and of providing a unified view on the data shared in the WeGovNow
platform, including the Open Data managed by OnToMap, in order to enable
WeGovNow applications to retrieve information collected about geographical objects,
initiatives, issues, and so forth. The OnToMap Logger enables WeGovNow applications
to push streams of events to be logged, and to retrieve filtered log information; e.g.,
the activities performed by a certain user in all the WeGovNow applications on a
certain date.

Exhibit 53 : Interaction between a WeGovNow (WGN) component and the
OnToMap(OTM) Logger.

For user activity collection, the OnToMap Logger offers an API that allows WeGovNow
applications to push user activity events, represented as JSON objects; see Exhibit 53.
Events can be pushed synchronously (one by one, as soon as the user actions happen),
or asynchronously (pushing a list of events to be stored). The action descriptions
specify user activities on data items; e.g., creating, updating, removing, commenting
some data objects.

The Logger APIs for logging and for data retrieval are fully developed.

Only authorized WeGovNow applications must be able to use the Logger APIs for
storing and retrieving data and events. For enforcing this requirement, the OnToMap
logger makes use of X.509 client certificates, which are used for authorization and
authentication of WeGovNow applications. In order to connect to the OnToMap
Logger, every application must forward a Certificate Signing Request to

 D3.5 Final release of WeGovNow platform prototype

98

LiquidFeedback that will result in a client certificate signed by LiquidFeedback that will
have to be included in every request made to the OnToMap Logger APIs.

Since the use of client certificates is not feasible in some circumstances (e.g. requests
sent directly from a web page), a token-based authentication method has been
implemented for obtaining logger events and open data. The access token can be
included as a request parameter, and it can be obtained only by authorized
WeGovNow applications.

The OnToMap Logger APIs allow WeGovNow applications to retrieve lists of user
action events, sorted from the most recent to the least recent. It is possible to use and
combine different filters, to generate list of events which correspond to the specified
filter(s); e.g., to retrieve all actions of a specific user in a specific timeframe. It is
possible to filter events by the user performing the action, application in which the
action was performed, user activity type, interval of time in which the action was
performed.

Since, as previously described, the OnToMap Logger is also used to provide a unified
view on the data shared among the WeGovNow applications by users; it is possible to
filter the event data by some properties of the shared data items associated with the
events. This results in the Data Retrieval APIs described in the previous section.
Moreover, in addition to the previously cited filters, it is possible to filter the event
data by geographical area in which the shared data items are located, the concept of
which the shared data items are instances and the unique identifier associated with
every shared data item.

The OnToMap Logger documentation can be found at the following URL:
https://OnToMap.eu/. This documentation reports the specification of the APIs, and
examples of usage with sample results.

6.9. InputMap (V3)

To enhance integration between WeGovNow components, the consolidated system
architecture (deliverable D3.1) introduced a unified location map-based module to
input spatial coordinates within WeGovNow components (Exhibit 54), improving the
overall look and feel by adopting a common solution platform wide, the overall
integration link components’ entities to a common geographical data source.

InputMap is a web map module connecting users input on a map (point-based
reference) with entities of the geographical data source provided by an ad hoc tile
server integrating official open data and OpenStreetMap entities of the project areas
(Exhibit 55). InputMap can be used by all components in replacement of common map
modules used to collect point-based locations (latitude and longitude), without any
specific technical requirements. The second version of InputMap introduces new
parameters and features, and a general restyling based on Material Design.

 D3.5 Final release of WeGovNow platform prototype

99

Exhibit 54: InputMap overlaps cartography with the geographical entities available
in WeGovNow. User's input is enhanced with references to the selected entity.

 D3.5 Final release of WeGovNow platform prototype

100

Exhibit 55 : InputMap uses a cartographic layer and a vector layer to the interactive
layer.The interative layer is a GeoJSON data layer provided by a specific tile server
integrating municipalities open data and OpenStreetMap entities.

InputMap is based on Leaflet and Leaflet VectorGrid plugin, to render the data
provided by a tile server specifically developed to provide the scale-wise the
geographical data available in WeGovNow. InputMap collects user’s location input
(click on the map, see Exhibit 56) and sends information to the “hosting” application,
the component embedding InputMap.

Exhibit 56: InputMap concept: user's input is combined with geographical
information retrived from WeGovNow tile server (AreaIndex).

 D3.5 Final release of WeGovNow platform prototype

101

To address new requirements coming from the integration of InputMap in
LiquidFeedback and ImproveMyCity, the third version of InputMap introduced state
management, InputMap can now be used to:

1. input a new location,
2. edit an existing location,
3. show a location

This change enables the use the same module in (creation and update) forms and in
presentation views. InputMap mode can be chosen via “state” parameter
(https://gitlab.di.unito.it/firstlife/inputmap).

The output of InputMap are:

● Latitude and Longitude
● Zoom level, current zoom of the map
● AreaId, identifier of the selected area (if applicable)
● TileId, hash encode of tile
● OSM Id, identifier of the geographical entity (if applicable)
● Name of the geographical entity
● Type of the geographical entity
● Address provided by the reverse geocoding service of OpenStreetMap

Nominatim7
● Display name of the address provided by the reverse geocoding

InputMap can be used even when there are not geographical sources available. The
extra information about zoom level in combination with latitude and longitude can be
used to infer the reference later on, as new geographical sources are available. Tile id
is specifically meant to provide a reference to an area, to support the area-based
aggregation provided by AreaViewer.

InputMap can be included as embed within any web application or websites as
replacement of other web maps. Through InputMap, users can interact with the
geographical entities within WeGovNow collected from OpenStreetMap or Open
Data, and select a direct reference between them and the hosting application
contents.

V2 of InputMap introduces a geocoding service connected to OpenStreetMap
Nominatim web service. The geocoding service is used to support address-based
geolocation via search bar, and to enrich the point-based (input on map) location with
the nearest address (reverse geocoding).

The search bar enables users to search location by address, by click on results users
can locate the map (Exhibit 57).

7 https://nominatim.openstreetmap.org/

 D3.5 Final release of WeGovNow platform prototype

102

Exhibit 57: InputMap V2 introduce a search bar (top left corner) enabling geolocation
by address. This service is based on OpenStreetMap Nominatim search API.

Relying on Nominatim APIs, V3 InputMap introduces the use of reverse geocoding of
coordinates, to enrich user’s input retrieving the most “close” address to their input
on map. The result of reverse geocoding is included in the overall result, and could be
used in case the TileServer does not contain information regarding specific
coordinates. The result is a resilient system which prioritise the information contained
in official open data, but in case non-covered areas or scales, it is able to rely on
OpenStreetMap crowd data.

 D3.5 Final release of WeGovNow platform prototype

103

Exhibit 58: InputMap enable users to input different entities according to the selected
zoom. E.g. it makes possible to refer explicitly to city district or building.

InputMap V2 introduced a label box introducing a tooltip text about how to use
inputmap and the current selected location. The language of the tooltip is dynamically
chose considering the agent language (browser), or it could be passed as parameter
“lang” invoking InputMap. The label box consents to cancel the current selection by
clicking “x” button (Exhibit 58). The cancel action sends a “null” message to the hosting
application.

To support integration of InputMap, a test page is available at
https://inputmap.firstlife.org/test. The test page shows InputMap result messages
sent to hosting applications triggered by users’ interactions (Exhibit 59).

 D3.5 Final release of WeGovNow platform prototype

104

Exhibit 59: InputMap test page shows InputMap messages corresponding to user’s
interactions with InputMap.

 D3.5 Final release of WeGovNow platform prototype

105

6.10. TileServer

InputMap and AreaViewer require to access to a common source of geographical data
to render an interactive layer on a web map. In order to provide a fast and standard
access to web map components, a tile server has been developed and deployed within
WeGovNow platform (TileServer).

TileServer provides geographical entities in vector tile format 2.1
(https://www.mapbox.com/vector-tiles/specification/), a open source format widely
used to provide vector tiles. TileServer provides other features to support the
interconnection between WeGovNow components’ entities and the common
geographical datasource included in TileServer. Specifically, TileServer provides the
following endpoints:

● /areas/:id returns the detail of a specific area
● /area/:z/:lon/:lat returns the ID of the related area
● /areas/content/:id returns a feature collection of contained areas
● /tile/:z/:x/:y returns a vector tile in PBF format8

Currently, TileServer datasource include the official open data and OpenStreetMap
layers of the municipality of Turin.

The end point of TileServer can be found at https://tiles.firstlife.org/, source code and
documentation can be found at the project repository
https://gitlab.di.unito.it/firstlife/tileserver/ . TileServer is an ExpressJS application,
using libraries and tools developed by Mapbox and Leaflet communities.

ProxyLogger

AreaViewer requires to access to OnToMap logs client side by querying for slippy tile
notation9 in GeoJSON standard10 encoded in Protocol Buffer (PBF) format11.
ProxyLogger is an ExpressJS REST endpoint which converts slippy tile [x,y,z] in
boundingbox query, supported by OnToMap logger, and then converts the result in
GeoJSON and PBF.

Currently, ProxyLogger exposes one method:

● GET /tile is mapped to GET /events endpoint in OnToMap logger APIs
Therefore, there is an instance of ProxyLogger endpoint for each OnToMap API
instance:

● loggerproxy-pt2.firstlife.org > p2.api.OnToMap.eu
● loggerproxy-pt3.firstlife.org > p3.api.OnToMap.eu
● loggerproxy-sandona.firstlife.org > sandona.api.OnToMap.eu

8 https://developers.google.com/protocol-buffers/docs/encoding
9 http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
10 https://tools.ietf.org/html/rfc7946
11 https://developers.google.com/protocol-buffers/

 D3.5 Final release of WeGovNow platform prototype

106

● loggerproxy-torino.firstlife.org > torino.api.OnToMap.eu
● loggerproxy-southwark.firstlife.org > southwark.api.OnToMap.eu

ProxyLogger is not meant to be used in production mode, but as support for client web
modules during the development and testing phases. In the late phase of the project,
ProxyLogger endpoints will be integrated in OnToMap if needed.

6.11. Enhanced User Profile Management

Enhanced User Profile Management is currently part of the Trusted Marketplace (TM)
component and its purpose is to provide a single entry-point to user’s preferences and
other data (such as user interests) across WeGovNow platform. Enhanced User Profile
Management extends the profile settings in UWUM (see Exhibit 60), including the
possibility to edit all information stored about the user by all WeGovNow components.
Moreover, it connects to social networks on user consent in order to get extra
information that could help to better matchmaking suggestions.

Exhibit 60: The Enhanced User Profile Management page, extending the UWUM
profile settings.

User Management, besides basic info, it includes other sections such as:

● Work & Education (see Exhibit 61)
● Personal interests (see Exhibit 62)

 D3.5 Final release of WeGovNow platform prototype

107

● Social network accounts (see Exhibit 63)
It should be noted that under the hood, the system provides more than 60000
predefined values which are selected automatically while user types at certain fields.
Users are also able to type free text.

Exhibit 61: Section of user's “work and education”.

Exhibit 62: Section of user's interests.

Social Networks account

Through the Enhanced User Management users are able to link to their user profile
various social networks as depicted in Exhibit 63.

 D3.5 Final release of WeGovNow platform prototype

108

Exhibit 63: Link social accounts.

The purpose of linking social accounts is to collect more information about the users
automatically and thus enhance the matchmaking mechanism. At any time, users are
able to unlink their accounts.

6.12. AreaViewer (V2)

The AreaViewer is a web map based module providing a view of WeGovNow
aggregated data based on OnToMap. It works in combination with the InputMap
component, exploiting the explicit relations between application data of WeGovNow
components and OnToMap entities.

The purposes of the AreaViewer are enhancing the overall look and feel of WeGovNow
platform and providing a coherent visualisation of the status of WeGovNow instances
across components. AreaViewer presents information from the overall WeGovNow
platform extracted from users’ activities via the OnToMap logger interface. The
information provides will be a summary represented as area-based clusters
(aggregations based on geographical entities), see Exhibit 64.

 D3.5 Final release of WeGovNow platform prototype

109

Exhibit 64: AreaViewer is composed by a static cartographic layer, a dynamic
geographical layer presenting aggregated data in area-based clusters and a focus

layer presenting the details of area-based clusters.

The AreaViewer is a component of the LandingPage that can be included in any
WeGovNow component through iFrame (embed) and be controlled via url. Currently,
the following parameters are available:

1) C, hash encoding on the initialization latitude, longitude (map centre) and
zoom level (latitutde:longitude:zoom) of the map.

2) Date, ISO format of the day, month, year of the retrieved data (default current
day)

3) Contrast, selection of the low/high contrast style
4) Lang, interface language

AreaViewer has two main status: “explore” and “focus” (Exhibit 65). In explore status
it is possible to pan and zoom the map, changing the view port, and to filter entities
according to the source components. Clicking will cause to switch to focus status. The
focus will highlight the clicked area, listing only the entities within it, and hiding all
point of interest (POIs) not related to the specific area. In focus state, a click inside the
focus area will cause to focus on deeply on a new area, a click outside the focus area
will cause to go back to explore mode, restoring the previous viewport. A click on one
the listed entities present in the focus area, will cause a redirection to the entity details
within the belonging component by using the deep-linking bilateral integration
method.

 D3.5 Final release of WeGovNow platform prototype

110

Exhibit 65: AreaViewer status automata: explore mode will change to focus on a
specific area by click, it goes back to explore mode by click outside.

AreaViewer is based on Leafletjs technologies, a famous open source JavaScript library
for web maps. It is developed in JavaScript ECMA6 and released under MIT license.
AreaViewer source code and documentation can be found in the project repository
(https://gitlab.di.unito.it/firstlife/areaviewer).

Interacting with areaViewer

areaViewer sends messages about its current state, and expects messages to trigger
state changes. For instance, it is possible to switch the current language sending a
message areaViewer.setLang with params {lang:'it'}.

Triggering a change in current state can be archived triggering a JavaScript event.

Getting state changes (reading the current state)

● areaViewer.focusOn entering of focus state
● areaViewer.explore entering in explorer state
● areaViewer.position at map viewport change

Triggering state changes (changing the current state)

● areaViewer.setView to change map viewPort
● areaViewer.setBounds to change map viewport
● areaViewer.setContrast to change map base layer
● areaViewer.setLanguage to change language available languages
● areaViewer.setDate to change time interval of the events query
● areaViewer.setPriority to change the rendering of events
● areaViewer.focusTo to enter focus mode on area id
● areaViewer.toExplore to exit from focus mode

Zoom, pan

 D3.5 Final release of WeGovNow platform prototype

111

● areaViewer.setInteractive to change focus behaviour enabling/disabling the
layout change and content rendering

Exhibit 66: AreaViewer explor state: POIs representing users' activities from OTM
logger.

 D3.5 Final release of WeGovNow platform prototype

112

Exhibit 67: Focus mode: user's click triggers a focus on the selected area, POIs within
the focus area are left in evidence. POIs outside the focus area (gray circles) are

reduced in size and left as background information.

6.13. Geo-Spatial Data Repository (GSDR) of WeGovNow for Quality
Assessment (V3)

The third version of Geo-Spatial Data Repository (GSDR) of WeGovNow for Quality
Assessment was released. This web service is developed for assessment, improvement
and representation quality of data utilized, provided, harvested and generated by
WeGovNow.

GSDR consists of the five main components. First component is event triggered tasks.
The tasks are designed to automatically derive data from the various sources (i.e.,
OpenStreetMap, OnToMap). The tasks are triggered either by time (OpenStreetMap
is updated once in three months) or as soon as source data are changed. The tasks
download required data and provide these data to a second component for further
processing. The second component is designed for data quality assessment and
improvement. Result of assessment is harvested by a spatial database as well as the
data itself. The data and result of the quality assessment can be derived through a
public API. Additionally, the API enables WeGovNow components (i.e., FirstLife,
LiquidFeedback, ImproveMyCyty and Community Maps) to implement quick data
check and users’ contribution improvement. Fifth component is a front-end displaying

 D3.5 Final release of WeGovNow platform prototype

113

quality assessment results (mainly, through a set of interactive maps) and interactive
examples for developers demonstrating ways of the public API use.

The two first components are relied on the igis.tk open source tools collection. The
tool geojson2spline is designed to convert GeoJSON data to Spatialite format.
tilelog2sqlite allows us to convert OpenStreetMap tile access log to the GSDR’s spatial
database. The third tool (wbi – Weighted Blocks Indicator) is developed to assess
quality of the spatial data.

The public API of GSDR is designed to provide access to data stored in the spatial
database and quick quality assessment and improvement. The API converts GET
requests to SQL code and response data in GeoJSON or JSON format (see Exhibit 68).
GET requests encode SQL code. The semantic of proper requests is described in detail
in the documentation available by the following link
https://wgn.gsdr.gq/docex.rvt#api.

Exhibit 68: Example of a proper request with correspondent SQL code and GeoJSON
response

Currently API supports six types of functions: (1) SQL core functions, (2) SQL aggregate
functions, (3) SQLite extention-functions.c, (4) Spatial functions, (5) Tiles Common
Framework functions, (6) Custom functions (e.g., levenshtein distance calculation).

A set of interactive examples assisting developers to write correct URLs to the GSDR’s
API was prepared (see https://wgn.gsdr.gq/docex.rvt#quality_examples). The
examples are split into three categories. Fists, basic examples of simple SQL requests
allow developers to understand semantics of the requests and derive correspondent
SQL code or raw response. Second, a number of examples demonstrating text input
improvement was prepared.

Data quality indicators were calculated for San Donà di Piave area. Quality of
OpenStreetMap and “Public Sector Information” data was assessed. Results are

 D3.5 Final release of WeGovNow platform prototype

114

available as a set of web interactive maps. Frontend is designed in responsive manner.
Web pages were tested on desktop and mobile devices. Web maps utilize the
described earlier public API. The API was designed to be universal and extremely
flexible, that allows us to use the same API for quick quality assessment and
improvement tasks, for providing of spatial data for interactive maps, and for
calculating statistics required for setting up colours of mapped features, etc. Such
flexibility has a disadvantage; users may easily write a request taking long time for
execution. To prevent it, maximal duration of a request processing is limited by two
seconds (longer requests are rejected). A number of techniques are proposed and
applied by GDRS (interactive maps and examples for developers) to prevent the
described long-time-requests problem. For spatial requests, area should be limited by
bounding box or tile definition. For large areas data should be aggregated by tiles and
tile layers should be used in a web application instead of regular bounding box
requested layers. Some SQL functions (e.g., levenshtein Distance function) are
required longer time. To decrease time of the processing number of elements should
be limited by a tile or a bounding box. Two types of tile coordinates are supported by
the API: regular tile coordinated and quadkey coordinates. Quadkey coordinates
enable us to easily aggregate features or request results for different zoom levels.
GSDR provides a set of functions designed for the tile-based processing. Concrete
examples are described by the following web page: https://wgn.gsdr.gq/docex.rvt.

The main page of the GSDR’s web site (see Exhibit 69) consists of the links to various
maps, examples and documentation. Links are decorated as icons, this allows us to
represent the user all significant parts of the web site graphically on one page.

 D3.5 Final release of WeGovNow platform prototype

115

Exhibit 69: Home page with links

Exhibit 70: Components of GSDR’s interface

Exhibit 70 describes the frontend elements of GSDR. In the exhibit:

1. Select a pilot site. Currently, the service covers three pilot sites: San Dona Di
Piave (Venice, Italy), Turin (Italy) and Southwark (London, UK). Moreover,
OpenStreetMap data and related quality indicators are available for the
Heidelberg area (Germany).

 D3.5 Final release of WeGovNow platform prototype

116

2. One of the following data layers is available.
• OpenStreetMap.Current - review of OSM current data for a pilot site

area.
• OpenStreetMap.PublicSectorInformation - review of public sector

information for a pilot site extracted from OSM data.
• OnToMap.PublicSectorInformation - review of public sector

information provided by OnToMap.
• OpenData.PublicSectorInformation - review of public sector

information provided by OpenData (Municipalities).
• OpenStreetMap-OnToMap.PublicSectorInformation - comparison of

OSM (PSI extraction) vs. OTM PSI data.
• OpenStreetMap-OpenData.PublicSectorInformation - comparison of

OSM (PSI extraction) vs. OpenData PSI.
3. Map visualization types:

• Features - represents data as separate square features.
• Heatmap - represents data as a field continious information.
• Tiles - represents data by tiles (features summarize data for current

zoom level+3).
4. Select a data attribute to display. The following attributes are available:

• Quality - aggregated data quality of a layer.
• DGeNpt - a number of points (Data Geometry Number of Points).
• DGeLinNumb- a number of lines (Data Geometry Number of Lines).
• DGeLinLeng - lengths of lines (Data Geometry Line Lengths).
• DGeAreNumb - a number of polygons (Data Geometry Areas Number).
• DGeAreLing - a length of polygons' boundaries.
• DGeAreArea - area of polygons.
• DAt - a number of attributes.
• MUh - a number of users' hits (Metadata User Hits).
• MCoNco - contributors' activity, number of contributors (Metadata

Contributors Number of Contributors).
• MCoNcs - contributors' activity, number of changesets (Metadata

Contributors Number of Changesets).
• MTlAve - an average version of features (Metadata Time Average

Version)
• MTlAti - an average integer timestamp (Metadata Time Average

Timestamp)
5. Apply button - update map with respect to form parameters.
6. A popup window - emerging by clicking on a map.

 D3.5 Final release of WeGovNow platform prototype

117

7. Zooming control.
8. Full screen and reset map rotation. A map could be rotated by

Shift+LeftMouse on a desktop computer, or by two fingers on a touchscreen.

In Exhibit 71 and Exhibit 72, interactive maps of OSM data quality (SDQI) and source
parameters are presented. Currently, three types of views are supported: feature,
heatmap and tile views. In order to represent a parameter in the feature and heatmap
views, classic bounding box request to a server is applied. For the tile view, requests
are implemented separately for each tile visible on a map. This approach is very
scalable, because it aggregates requested data according to a tile and, thus, it is
applicable to all zoom levels.

Exhibit 71: SDQI in the feature and heatmap view. Bottom: area of polygons (left),
number of changesets (right). Red and green represent minimal and maximal values,

correspondingly. Zoom level 14. San Donà di Piave, Italy. Components of GSDR’s
interface

 D3.5 Final release of WeGovNow platform prototype

118

Exhibit 72: Comparison of OSM (red) and PSI (green) data. Left (zoom level 14):data
quality, size represents the sum of quality classes. Right (zoom level 15):area of

polygons, size represents the sum of areas. San Donà di Piave, Italy

The data quality assessment results are available in form of the archived data and
GSDR’s interactive web pages. Moreover, we use the results for embeddable instances
of GSDR. In general, such instances consist of API and a database comprising only data
with acceptable quality (low-quality data is filtered out). Embeddable GSDR enables
to implement the following functionality for users’ input improvement: auto
completing, spell checking, object picking, client- and server-side snapping. Exhibit 73
illustrates this functionality.

 D3.5 Final release of WeGovNow platform prototype

119

Exhibit 73: Users input improvement using an embeddable GSDR instance: a) auto
completing (Turin), b) spell checking (San Dona), c) object picking (San Dona), d)

client-side snapping (Turin), e) server-side snapping (Southwark).

a) b)

c) d)

e)

Examples of pilot sites instances are accessible by the following links:

https://gsdr.gq/docex_sd.html

https://gsdr.gq/docex_tr.html

https://gsdr.gq/docex_sw.html

A detailed description of embeddable GSDR is provided in [EmQ]. Moreover, concrete
instructions allowing deployment of an instance of GSDR and all required software and
data are provided by the following links:

https://wgn.gsdr.gq/emgsdrwgn.tar.gz

https://wgn.gsdr.gq/instructions_emgsdr_centos7.txt

Furthermore, all data and source code was archived using Zenodo repository:

https://doi.org/10.5281/zenodo.2454150

 D3.5 Final release of WeGovNow platform prototype

120

https://doi.org/10.5281/zenodo.2455025

The development version of libraries and scripts are contributed to the following
projects: http://igis.tk and http://tiles.cf.

 D3.5 Final release of WeGovNow platform prototype

121

7. WeGovNow Data Quality Assessment Results
Data quality assessment of urban data is a batch activity procedure aiming at providing
quality contextual data to WGN users. The assessment should answer the question “is
the source good enough to support users’ activities?”. In other words, the
cartographic information and open data provided by WGN should not mislead users
in their evaluations but should, instead, support the collaboration and cooperation
within the platform.

WGN platform handles the following data sources:

• OpenStreetMap (OSM) data,

• Public Sector Information (PSI) and open data,

• FistLife tiled maps data.

Each of the different types of data is further analyzed below. OpenStreetMap (OSM)
is utilized mainly as a base map for WeGovNow applications. Public Sector Information
(PSI) and open data are provided through OnToMap. Original open dataset files have
been assessed as well. Point, polyline and polygon features related to a city
infrastructure (e.g., bike lanes, urban parks, hospitals, etc.) are provided as PSI
datasets. WeGovNow’s applications widely utilize PSI data. It allows users to select
geospatial objects on an interactive map, derive and manipulate with attribute
information (e.g., address of a cinema stored as an attribute), search (e.g., find a shop
by its name), etc. PSI data could be retrieved by OnToMap’s API. An application of
WGN may derive PSI data by this API using different parameters (e.g., bounding box,
language, etc.). The datasets are provided in GeoJSON format. Higher level
manipulations may be implemented on a side of a specific application. Objects of city
infrastructure are provided as point, polygon and polyline features. Currently, the
following data types are provided: urban parks, schools, stores, markets, bike lanes,
restaurants, museums, places of worship, monuments, libraries, health social services,
hospitals, drug stores, law enforcement objects, art galleries, clubs, etc.

Earlier, it has been decided to implement a web service for data quality assessment
and improvement. Geo-Spatial Data Repository (GSDR, https://wgn.gsdr.gq) has been
developed for WeGovNow project needs. It provides the following functionality:

• Intrinsic data quality assessment,
• Comparable data quality assessment,
• Presenting data quality assessment results in interactive maps and auto-

generated report,
• Public APIs for quick data check and retrieval.

Ground truth reference datasets are not available in the frame of the project. Despite
this, data quality could be evaluated and improved by the methods mentioned above.
Intrinsic quality assessment allows defining data quality of OSM data. Additionally, the
service is designed for detecting errors in PSI and WGN apps’ data. Quality and

 D3.5 Final release of WeGovNow platform prototype

122

imperfections of PSI data are defined by the comparison with OSM data with known
quality calculated intrinsically.

The core component of GSDR is a database. The main harvesting data types are as
follows: (1) OpenStreetMap (OSM) covering pilot sites, (2) original PSI data files (in the
ESRI shape-file format), (3) PSI data provided by OnToMap, (4) Tiled Raster Maps
utilized by WeGovNow and provided by the FirstLife’s infrastructure.

OSM is a very dynamic map, thus OSM data is automatically updated every three
months. This functionality is supported by the aforementioned web service.

In general, a process of quality evaluation may be described as follows. First, quality
of OSM data is defined intrinsically at the first step. Next, quality of PSI data is
evaluated using OSM data with known quality. It should be mentioned that many
objects provided by the PSI datasets of OnToMap are presented in OSM.

The following publications provide the detailed methodology designed for the
WeGovNow project:

• [BFS] Noskov A. and Zipf A., "Backend and Frontend Strategies for Deployment
of WebGIS Services", Proc. SPIE 10773, Sixth International Conference on
Remote Sensing and Geoinformation of the Environment (RSCy2018), 107730I
(6 August 2018); Internal-Link DOI: 10.1117/12.2322831

• [PoWQ] Noskov, A.: Smart City WebGIS Applications: Proof of Work Concept
for High-Level Quality-of-Service Assurance, ISPRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci., IV-4/W7, 99-106, DOI: 10.5194/isprs-annals-IV-4-W7-99-
2018, 2018.

• [RTiles] Noskov A.,"Computer Vision Approaches for Big Geo-Spatial Data:
Quality Assessment of Raster Tiled Web Maps for Smart City Solutions"
Proceedings 7th International Conference on Cartography and GIS, Vol. 1,
Editors: T. Bandrova & M. Konecny, Publisher: Bulgarian Cartographic
Association, ISSN: 1314-0604, pp. 296-305, June 18-23 2018 DOI:
10.5281/zenodo.1346671

• [QConc] Noskov A., Zipf A. and Rousell A. "Data Quality Concept for e-
Government Web-Map Based Services" Proceedings 7th International
Conference on Cartography and GIS, Vol. 1, Editors: T. Bandrova & M. Konecny,
Publisher: Bulgarian Cartographic Association, ISSN: 1314-0604, pp. 306-315,
June 18-23 2018 Internal-Link External-Link DOI: 10.5281/zenodo.1314215

• [OSMMod] Noskov, A., Grinberger, A. Y., Papapesios, N., Rousell, A., Troilo, R.,
& Zipf, A. (2019), "Modelling and Assessing Spatial Big Data: Use Cases of the
OpenStreetMap Full-History Dump." In A. Voghera, & L. La Riccia (Eds.), Spatial
Planning in the Big Data Revolution (pp. 16-44). Hershey, PA: IGI Global.
DOI:10.4018/978-1-5225-7927-4.ch002

 D3.5 Final release of WeGovNow platform prototype

123

• [EmQ] Noskov A. and Zipf A.: Open-data-driven embeddable quality
management services for map-based web applications. Big Earth Data. Taylor
& Frances DOI:10.1080/20964471.2019.1592077

In [BFS] main principles behind GSDR are described. [PoWQ] introduces a
methodology for assuring the quality of web applications. [RTiles] provides solutions
for automatic quality assessment of raster web-map tiles (RWMT) designed for
WeGovNow. [QConc] presents a concept of data quality utilized in the project.
[OSMMod] introduces a novel approach to OSM data evaluation. [EmQ] summarizes
the WeGovNow data quality related activity.

7.1. Resulting Datasets

The resulting datasets have been achieved using the Zenodo service:

https://doi.org/10.5281/zenodo.2454150

Exhibit 74 shows a list of the resulting files. The *.sqlite files are SpatiaLite GSDR
databases. *.csv.gz are comma-separated value compressed text files. They mainly
provide content dumps of the full GSDR database’s tables. *.linestats.txt are line
statistics resulting files. linestats.html provides the line statistics in human-readable
HTML format. *.poly provide boundaries of pilot sites suitable for various OSM tools.
*.osm.bz2 are OSM data clipped from the OSM data dump. *.json.gz are compressed
GeoJSON files providing masks utilized for the extraction of OSM (sdqimask.json.gz),
and OnToMap’s PSI (sdqipsimask.json.gz) data for GSDR pilot sites’ instances.
ontomapdata.tar.gz archives data layers provided by OnToMap.
opendata_sandona.zip, opendata_southwark.rar, and opendata_turin.rar comprise
original (without modifications) Open Data in the ESRI shape-file format.
wgntilelog.sqlite.gz is a database comprises OSM tile hits data utilized for quality
assessment.

Exhibit 74: Archiving data: data files information.

File name MD5 sum File size

1 corpts.csv.gz 3865626c9ea29968292484fb206da4b
1 40.1 Mb

2 edpotmdist.csv.gz f73c07bed9af6739ae9db25c746e548
d 6.8 Mb

3 elements.csv.gz b8beca49911f8d6145409a5af6f1ae4
7 25.1 Mb

4 eltile.csv.gz 4f977a80deef8ac0fe50deef39320edc 5.1 Mb

5 gsdr_wgn_sd.sqlite c44ccee39d13635a5cc74e2616e0c9a
d 22.3 Mb

6 gsdr_wgn_sw.sqlite 109b925b8a75f13d2e461f1c76702a4
3 119.8 Mb

 D3.5 Final release of WeGovNow platform prototype

124

7 gsdr_wgn_tr.sqlite be1f4e884f7e6c9e847adbd89db1efe
a 71.2 Mb

8 hd.linestats.txt 822e2f76023ffea8caaa371fe9a8736a 428 B

9 hd.osm.bz2 f18b837a6111dba48fde92cdef966c2
e 12 Mb

10 hd.poly c885be83c702450c2d54d2d0460bccc
0 145 B

11 keys.csv.gz ccf7eb4cdb38e8a49550909bfde9439
8 20 Kb

12 linestats.html e6309a4d625488bc9ef1999ba4a1fbf
3 11 Kb

13 nocorpts.csv.gz ab4a08619f81d6bad0508199513c54f
a 3.1 Mb

14 ontomapdata.tar.gz 6f388e92f541d0573a99b7292a06f40
1 8.7 Mb

15 opendata_sandona.zip 09bd68eabc476b07d1bf81b6c994af5
d 357 Kb

16 opendata_southwark.r
ar

cb2ed202374bdb194a66ddf153d9bb
71 4.9 Mb

17 opendata_turin.rar 47f5e0216c2f67a57b24b7c83aae0f58 4.1 Mb
18 osmrast_ptsnum.csv.gz e18b3d4ba49acaafaf8b30f18f175b4f 1.6 Mb

19 osmrastpts.csv.gz 3eb8d2a3d09ce0a50f8b75c812c9d21
1 2.4 Gb

20 qwgnsdata.sqlite.gz aa7fb169091d4614b465370dfd5e69f
c 836.3 Mb

21 sandona.poly b732e21887670c171b8e175f981b12
8e 2 Kb

22 sd.linestats.txt d54de1a26cabf40930a2b562da1cd5b
7 418 B

23 sd.osm.bz2 e959f35c59c210cfa880608959f7c0ed 2.2 Mb

24 sdqidata.csv.gz 1b9258bb95b1686eeff1fa0d7c41268
7 5.8 Mb

25 sdqimask.json.gz 0f3c9b125e30419cffab57207bcbb772 132 Kb
26 sdqipsimask.json.gz 14e0e2249aff8a8cf78ffeb93b87d7e1 99 Kb

27 southwark.poly 51c1290a55bc8cbab86b119c68e26c4
b 150 B

28 sw.linestats.txt b591bd22b8ddae07e5709b1705e3fd
5f 430 B

29 sw.osm.bz2 92004647668d496977eb4b8ea446ee
a0 12.1 Mb

30 tags.csv.gz 1c90d903f437cd7fc2263e3ae98b173
4 16.6 Mb

 D3.5 Final release of WeGovNow platform prototype

125

31 tiles.csv.gz 3165f5d0a53c87d343a79cb235822f6
1 4.2 Mb

32 tilesizes.csv.gz 71f961b960a22789034f32140ae41ea
3 2.9 Mb

33 tr.linestats.txt ff147a233ccd1e53f53d5d28259a197
6 426 B

34 tr.osm.bz2 100800c7305153f57cfb805fcca6e874 6 Mb

35 turin.poly f86130b138e50766b1c34e839b0f4d7
2 2 Kb

36 vals.csv.gz 3ab1a1eb1bbbacf3070b323534f9f76
9 2.7 Mb

37 wgntilelog.sqlite.gz e22b116d70fbfa01484b937725ed637
6 460.1 Mb

7.2. Open Data Evaluation

An Equidistant points (EDP) based approach to the Open Data evaluation is described
in [EmQ]. The central principle is as follows. EDP are calculated and saved to a
separate data layer. For this, point data are taken unchanged. EDP reside on line
features. Polygon objects are treated as line features; for this, boundaries are
processed. We calculated EDP for two data types: OSM and OnToMap. For OSM, a
one-meter interval between points is applied. In order to reduce a time for further
processing, a three-meter interval is used for the OnToMap data.

We calculated the shortest distances between points of two datasets. It allows us to
define an average shortest distance from an OnToMap feature to OSM objects. This
approach enables to mark outstanding (in a negative sense) data layers. Notice that
all points, nodes, and vertices are included into EDP datasets. Moreover, EDP
facilitates evaluation of the correctness on the import of Open Data into OnToMap.
For this, we prepare one-meter EDP for both datasets and detect Open Data EDP
without correspondences in OnToMap.

For a comparative evaluation of the OnToMap data we define the shortest distance
from corresponding points to the closest OSM feature (i.e., point, line or boundary).
Then, for each layer, we aggregate a set of parameters: number of EDP, minimal,
maximal, average, median values, and standard deviation of shortest distances. In
order to speed up the processing, instead of OSM features we use corresponding one-
meter EDP, while for OnToMap three-meter EDP are calculated.

EDP results enable us to evaluate the OnToMap. For this, we compare OnToMap data
with source Open Data and, then, with OSM. The OnToMap and Open Data
comparison are based on one-meter EDP. Exhibit 76 provides the resulting EDP
statistics. Point integer coordinates in the UTM projection were considered. For each
coordinate pair, we calculated the number of points that belong to a pair. If both data

 D3.5 Final release of WeGovNow platform prototype

126

types (OnToMap and Open Data) are linked to a coordinate pair, this pair is marked as
correct and, thus, appeared in corpts.csv.gz. Otherwise, it is considered incorrect and
stored in nocorpts.csv.gz.

Several inferences can be concluded from the resulting EDP data. First, one can notice
that Southwark EDP comprise very few points (52) without correspondences. That
indicates that almost all data features from the source Open Data appear almost
unchanged in the OnToMap database. Second, the San Dona di Piave EDP datasets
comprise up to 160 points without correspondences (points appeared in OnToMap
database only). few data sets are not included in the Open Data layers transferred to
us. Third, the Turin EDP data have massive points without correspondences; both
single Open Data and OnToMap points are marked. It means that many data features
were ruled out during the data selecting. Moreover, there are OnToMap points
without Open Data pairs. It indicates that several source Open Data layers are not
included in the dataset provided for the evaluation.

In Exhibit 75, points without correspondences are depicted. Number of points with
and without pairs are as follows (number of pair points, without correspondences,
ratio, OnToMap single points, and Open Data single points):

• Southwark: 1250867, 52, 0.004%, 26, 26;

• San Dona di Piave: 67994, 160, 0.2%, 160, 0;

• Turin: 1411687, 18803, 1.3%, 3888, 14915.

Exhibit 75: EDP without correspondences: blue – OnToMap, red -OpenData

San Dona Southwark

 D3.5 Final release of WeGovNow platform prototype

127

Turin

EDP data are utilized for the evaluation and filtering out of the OnToMap data against
OSM features. The shortest distances from the three-meter OnToMap EDP to the one-
meter OSM EDP are calculated (see the edpotmdist.csv.gz resulting file). The results
are presented in Exhibit 76 according the pilot sites and layer names. A complete list
of the OnToMap’s layer names is as follows:

• San Dona di Piave (25 layers): Accommodation, ArtGallery, BicyclePath,
Business, Cafe, Cinema, Club, CulturalCenter, FinancialService,
FoodAndAccommodation,HealthSocialService,
InformationCommunicationService, Leisure, Library, Logistics, Manufacturing,
Monument, Museum, PowerDistribution,
ProfessionalScientificTechnicalActivity, RealEstateActivity, Restaurant, School,
Store, WaterAndWasteDisposal;

• Turin: Cinema, Drugstore, HealthSocialService, Hospital, LawEnforcement,
Leisure, PlaceOfWorship, School, StreetMarket, UrbanPark;

• Southwark: BicyclePath, Highway, HistoricalCenter, Monument, ParkingLot,
PlaceOfWorship, School, TrainStation, UrbanPark.

 D3.5 Final release of WeGovNow platform prototype

128

Exhibit 76: Shortest distances from three-meter OnToMap EDP to one-meter OSM
EDP. Values bigger than the values defined by the rule-of-thumb are marked by a

bold font.

Data Number Min Max Avg Median Stdev

PSI.OTM.SD.ArtGallery 1 3.7 3.7 3.7 3.7 0

PSI.OTM.SD.BicyclePath 22327 0 29.9 2.6 1.9 3

PSI.OTM.SD.Business 724 0 29.8 3.1 2.2 3.5

PSI.OTM.SD.Cafe 85 0 15.1 2.9 2.2 2.9

PSI.OTM.SD.Cinema 3 3.1 5.2 4.4 4.8 1.1

PSI.OTM.SD.Club 20 0.4 7.6 3.7 3.5 2.2

PSI.OTM.SD.CulturalCenter 1 1.3 1.3 1.3 1.3 0

PSI.OTM.SD.FinancialService 175 0 15.6 2.8 2.1 2.3

PSI.OTM.SD.FoodAndAccom 181 0.1 19 2.8 2.1 2.8

PSI.OTM.SD.HealthSocialService 94 0.3 17 4.4 3.8 3

PSI.OTM.SD.InformationCom 107 0.2 29 4.2 2.6 4.6

PSI.OTM.SD.Leisure 63 0.1 11.7 3.3 2.8 2.3

PSI.OTM.SD.Library 1 7.1 7.1 7.1 7.1 0

PSI.OTM.SD.Logistics 67 0.2 12.2 3.2 2.7 2.2

PSI.OTM.SD.Manufacturing 262 0.2 24.6 4.2 3.2 3.5

PSI.OTM.SD.Monument 23 0.3 16.3 6.3 5.9 4.2

PSI.OTM.SD.ProfessionalScienti 191 0.2 29.8 4 2.5 5.1

PSI.OTM.SD.RealEstateActivity 996 0 29.8 3.8 2.8 4.1

PSI.OTM.SD.Restaurant 58 0.2 17.1 2.7 2.1 2.6

PSI.OTM.SD.School 65 0.2 11.2 4 3.7 2.7

PSI.OTM.SD.Store 1110 0.1 29.8 3.4 2.5 3.4

PSI.OTM.SD.WaterAndWasteDis 9 0.7 29.8 6.7 4.3 8.9

PSI.OTM.SW.BicyclePath 1014 0 16.5 2.3 1.8 2.1

PSI.OTM.SW.Highway 286418 0 29.9 4.1 2.4 4.9

PSI.OTM.SW.HistoricalCenter 36191 0 29.9 3.5 2 4.4

PSI.OTM.SW.ParkingLot 80533 0 12.5 2.1 1.7 1.6

PSI.OTM.SW.School 390 0.1 26.6 7.3 5.3 6

 D3.5 Final release of WeGovNow platform prototype

129

PSI.OTM.SW.TrainStation 14 0.4 8.8 2.6 1.3 2.7

PSI.OTM.SW.UrbanPark 26496 0 29.7 2.4 1.7 2.6

PSI.OTM.TR.Cinema 61 0.1 5.5 2.3 2.2 1.3

PSI.OTM.TR.Drugstore 225 0.1 9.6 1.2 1 1

PSI.OTM.TR.Hospital 6468 0 29.9 4 1.9 5.3

PSI.OTM.TR.LawEnforcement 66 0.1 6.1 1.4 1.1 1.3

PSI.OTM.TR.PlaceOfWorship 8443 0 29.9 3.7 1.7 5

PSI.OTM.TR.School 61099 0 29.9 4.2 1.8 6

PSI.OTM.TR.StreetMarket 7123 0 29.1 2.4 1.7 2.4

PSI.OTM.TR.UrbanPark 421023 0 29.9 3.9 2.7 4.2

We have carried out a detailed visual and statistical analysis of the datasets and
defined the first rule of thumb. The rule says that layers comprise more than 500
points with average, median and standard deviation more than 4, 2 and 4,
correspondingly, should be excluded from the further processing, because they are
inconsistent with the OSM features. In Exhibit 76 values meeting the criteria are
marked by a bold font. According to the table, ”PSI.OTM.SW.Highway” is a low-quality
layer which should not be utilized. OSM highway data provided by GSDR.GQ can be
used instead.

7.3. Evaluation of Open Street Map Data

In [OSMMod], we have described a novel methodology for the evaluation of OSM
data. Further, we provide essential results which are described in detail in [EmQ].
We have introduced the scores allowing users to compare OSM data in pilot sites.
According to the resulting scores, the pilot sites are ordered from the lower to higher
quality as follows: San Dona di Piave (19), Turin (39), and Southwark (67). The scores
facilitate further PSI data quality assessment. In Exhibit 77, the quantity of
characters of OSM data according to the string classes is provided. The scores are
calculated according to the normalized values displayed in parentheses.

Exhibit 77: Line Statistics Results according to the string classes.

Attribute
name San Dona Southwark Turin

lines 458375 2661966 1473814

chars 34,919,699 168,024,430 94,605,273

 D3.5 Final release of WeGovNow platform prototype

130

(2.369E+01) (1.140E+02) (6.419E+01)

sblank
1,413,536 (9.591E-
01)

8,810,992
(5.978E+00)

4,729,122
(3.209E+00)

atrs
19,365,896
(1.314E+01)

93,092,114
(6.316E+01)

53,381,869
(3.622E+01)

noatrs
14,140,267
(9.594E+00)

66,121,324
(4.486E+01)

36,494,282
(2.476E+01)

stags
1,697,083
(1.151E+00)

10,096,675
(6.851E+00)

5,327,011
(3.614E+00)

ctags 49,580 (3.364E-02) 1414,824 (2.815E-
01) 360,556 (2.446E-01)

slashmore 817,592 (5.547E-01) 4,494,286
(3.049E+00)

2,226,518
(1.511E+00)

more 49,579 (3.364E-02) 414,823 (2.815E-01) 360,555 (2.446E-01)

mblanks1
1,724,456
(1.170E+00)

8,335,417
(5.656E+00)

4,623,310
(3.137E+00)

noatrsaz
8,077,521
(5.481E+00)

34,029,882
(2.309E+01)

18,973,022
(1.287E+01)

dquotes
3,448,912
(2.340E+00)

16,670,834
(1.131E+01)

9,246,620
(6.274E+00)

atrsblanks 19,724 (1.338E-02) 1,132,696 (7.685E-
01) 343,010 (2.327E-01)

atrs09
12,046,340
(8.174E+00)

46,094,568
(3.128E+01)

26,494,417
(1.798E+01)

atrsaz
2,362,232
(1.603E+00)

20,745,112
(1.408E+01)

12,315,721
(8.356E+00)

atrsAZ 402,052 (2.728E-01) 3,294,365
(2.235E+00)

1,892,739
(1.284E+00)

atrspunct
1,084,071 (7.356E-
01)

5,151,912
(3.496E+00)

3,088,311
(2.095E+00)

 D3.5 Final release of WeGovNow platform prototype

131

atrsgraph 2,565 (1.740E-03) 2,627 (1.782E-03) 1,051 (7.131E-04)

SCORE 19 67 39

7.4. Ad-Hoc Quality Assessment of Tiled Raster Maps for Parco Dora

In the Deliverable 1.2, we have introduced an approach to the entropy-based
assessment of tiled raster web-maps. OpenStreetMap, Google Maps, and Bing Maps
have been examined. It has been disclosed that all maps provide incomplete data.
Therefore, FirstLife has started to use another web map source for the Turin pilot site:

http://geoportale.comune.torino.it/web/ or http://geomap.reteunitaria.piemonte.it/ ws/siccms/coto-
01/wmsg01/wms_sicc01_dati_di_base

This source has been involved in the assessment. Blurred features’ entropy is utilized
for comparable assessment which enables to calculate the amount of information
provided by a map and compare maps. Results of calculations are described further.
The approach is implemented as a part of GSDR.

Parco Dora is a pilot area related to several scenarios. Thus, this area has been
considered in detail. Using blurred features’ entropy, we calculate raster tile
comparable completeness provided by popular map services and local map provider
for Dara Park's area. In addition to the analysis carried out in January 2017, we
conducted an evaluation in January 2019. The results show map updates and allow us
to compare maps from different sources. The following three exhibits demonstrate
the results. Exhibit 78 depicts 3D models of extracted information. Exhibit 79 shows
contour line maps of the blurred features’ entropy.

Exhibit 78: 3D models of extracted information represented by the blurred features’
model (January 2019).

Bing Maps

 D3.5 Final release of WeGovNow platform prototype

132

Google Maps

OSM

 D3.5 Final release of WeGovNow platform prototype

133

Local Data Provider

 D3.5 Final release of WeGovNow platform prototype

134

Exhibit 79: Contour maps of the blurred features’ model (January 2019). From top to
bottom: bing, google, osm and local provider.

 D3.5 Final release of WeGovNow platform prototype

135

Exhibit 80: Lengths of blurred features’ model contour lines (in meters).

Bing
2017 Bing 2019

Google
2017

Google
2019 OSM 2017 OSM 2019

Turin
(local
provider)
2019

Overall 39825 62396 146618 163151 150372 206018 279677
2017-
2019,% 36 10 27
% of Turin 14 22 52 58 54 74
Polygon 10110 32357 91254 101990 79540 117939 257473
2017-
2019,% 69 11 33
% of Turin 4 13 35 40 31 46
Boundary 8264 24230 30829 34194 38465 53437 86129
2017-
2019,% 66 10 28
% of Turin 10 28 36 40 45 62
Polyline 28451 29272 88585 88558 76250 99390 48726
2017-
2019,% 3 0 23
% of Turin 58 60 182 182 156 204
Point 0 0 515 1044 1831 2779 7581
2017-
2019,% 0 51 34

 D3.5 Final release of WeGovNow platform prototype

136

% of Turin 0 0 7 14 24 37

According to Exhibit 80, the local provider delivers maps with the highest quantity of
information. The statistics are broken down to polygon, boundary, polyline and point
features. Notice that OSM provides much more information of line features (almost
twice). Nevertheless, the local provider’s maps contain approximately 25% more
information than OSM. Google provides 42% less information, while, Bing comprises
only 14% percent in comparison to the local provider. OSM is the most updated map;
the information quantity has been increased by 27%. The local provider maps were
not evaluated in 2017. From the conducted analysis, one can conclude that choosing
the local map provider for the FirstLife’s Turin instance was a correct decision.

7.5. Aggregated Data Quality

Simplified Data Quality Indicator (SDQI) is a mock data quality indicator implemented
in the frame of GSDR [QConc]. It was designed to evaluate prospective of aggregated
data quality indicators and their visualization and utilization. The idea if the SDQI is
very simple. A set of parameters are defined. Each parameter represents an essential
aspect of data or metadata. Moreover, a lower value indicates lower fitness-of-use
and vise versa. The following parameters were defined: number of points, number of
lines, length of lines, number of polygons, length of polygons’ boundaries, area of
polygons, number of attributes. The mentioned parameters could be calculated for
almost any vector spatial data. In addition, the following parameters were calculated
for OSM data: number of tile hits (represents an OSM tile popularity, it is delivered by
OSM planet portal), number of contributors, number of changesets, average version,
average timestamp. SDQI is calculated as follows:

𝑆𝐷𝑄𝐼 =
&∑ 𝑣) − 𝑚𝑖𝑛𝑣)

(𝑚𝑎𝑥𝑣) − 𝑚𝑖𝑛𝑣))/10
5
)67 8 − 𝑚𝑖𝑛𝑐

(𝑚𝑎𝑥𝑐 − 𝑚𝑖𝑛𝑐)/10

where, i is a parameter’s index, minvi and maxvi are minimal and maximal values of a
parameter, correspondingly. minc and maxc are minimal and maximal class numbers.
One can mention that data are split into 10 classes. A lower value indicates lower data
quality and vise versa. SDQI is calculated for OSM tile rectangle areas in zoom level 19.

SDQI is calculated for every tile of the pilot sites. SDQI of OSM and PSI data is
provided for all pilot sites. PSI’s SDQI does not cover OSM specific parameters
(number of hits, contributors, changesets, canny points, average version, and
timestamps). It is calculated for the comparison of the PSI sources: OSM, OnToMap
and Open Data.

As mentioned in [RTiles], files sizes of PNG raster tiled web maps of OSM and Google
Maps are compared. File sizes were obtained without actual downloading of PNG
files; they have been retrieved from headers provided by a web server. In general,

 D3.5 Final release of WeGovNow platform prototype

137

bigger tile size means that it provides a more quantity of information.

According to the harvested size statistics, empty tiles (i.e., tiles filled by only one
color) have the following sizes: OSM - 81, Google Maps - 215. Further, we use the
difference of these values as a ”gap” value (215-81 = 134). In order to prevent the
influence of the PNG encoding model chosen by tile providers, we normalize the
OSM - GoogleMaps tile size differences using the gap. Tiles’ SDQI groups the
resulting statistics of the file-size differences.

In order to define conformance quality level of OSM data, we analyze tile file size
according to the SDQI classes. Exhibit 81 illustrates the results. In the figure, the
following parameters are depicted (Y-axis): standard deviation (dark red bars),
minimal (red), median (green), average (blue), and maximal (yellow) values of OSM-
GoogleMaps file-size differences. All parameters are calculated using the following
equation: (osm_size−googlemaps_size)∕gap. Moreover, minimal and maximal values
are divided by 10.

Using the bar charts, in [EmQ], we have specified a rule-of-thumb: a minimally
acceptable data quality level is bigger than SDQI class with either minimal or average
value more than two of standard deviation, minimal or maximal values, while these
two values are not equal zero. According to Exhibit 81 and the rules-of-thumb, an
acceptable data quality level for pilot sites are as follows: (a) San Dona di Piave - 4,
(b) Turin - 3, (c) Southwark - 1.

 D3.5 Final release of WeGovNow platform prototype

138

Exhibit 81: File-size statistics (Y-axis) according to the SDQI classes (X-axis). a) San
Dona di Piave, b) Turin, c) Southwark. Standard deviation (dark red), minimal (red),

median (green), average (blue) and maximal (yellow) values.

Another rule-of-thumb allows defining minimally acceptable SDQI level for PSI data
using the OSM, PSI OnToMap, and PSI OSM SDQI results (see [EmQ]). The rule says
that PSI OnToMap SDQI should be more than PSI OSM SDQI for tiles with OSM SDQI
more or equal a minimally acceptable data quality level. Moreover, PSI OnToMap
SDQI level should have ”+2” class in comparison to PSI OSM SDQI for tiles with OSM
SDQI less a minimally acceptable data quality level. The rule can be formulated as
follows:

Qpsiotm – Qpsiosm ≥ -1, when Qcurosm ≥ Qminosm

Qpsiotm – Qpsiosm > 2, when Qcurosm < Qminosm.

 D3.5 Final release of WeGovNow platform prototype

139

Exhibit 82: SDQI Results. Color background is OSM SDQI levels. Hatching areas are
masks used for the OnToMap data selection.

Tiles corresponding to the described rule are marked in Exhibit 81 as an OTM mask.
The masks depict areas used for the selection PSI OnToMap data for the resulting
databases of the pilot sites. In Exhibit 82, OSM SDQI classes are displayed by color
background. For each pilot site, the rule-of-thumb specifies masks for the selection
of OSM data masks. One can notice that significant area of the San Dona di Piave and

 D3.5 Final release of WeGovNow platform prototype

140

Turin sites have SDQI level below a minimally acceptable quality level. Almost whole
area of Southwark pilot site is covered by tiles with SDQI level greater than minimally
acceptable quality levels. These results are utilized for the preparation of
embeddable instances of GSDR for each pilot site (for details see [EmQ]). Moreover,
PSI masks represent areas with an acceptable quality of PSI data.

8. Conclusions
On the road to the final prototype of WeGovNow platform was filled by many
challenges, we had to overcome in order to design, build and deploy WeGovNow
platform. The production-ready version of WeGovNow platform passed three major
milestones in terms of three prototype versions of the platform. In general, the
purpose of releasing three prototypes is to consolidate, check and test the
improvements made by the different development teams involved in WeGovNow
project. Specifically, each prototype addresses one phase of the life-cycle of the
development process.

The scope of the 1st prototype of WeGovNow platform was to be a proof of concept
of the integration of the existing components of WeGovNow, in the technical
framework of the platform (as described in “Consolidated System Architecture” D3.1).

The current 2nd prototype of WeGovNow was useful to stress new modules and
features we designed and developed within WeGovNow project (new components
such as the Landing Page and Trusted Marketplace).

Finally, the 3rd and final prototype includes new components and the bilateral
integrations between components, and it will be used for testing focused on the
integration of the platform.

Setting up and running multiple instances of WeGovNow platform is part of the
technical testing of the platform itself. So far, we managed to solve various minor
issues related to the extension of WeGovNow components to support the general
architecture, such as CORS errors12, miss use of https certificates and the like.

In particular, in order to run multiple instances of WeGovNow platform, each
development team had to develop a methodology to provide:

- Data isolation
- Instance-based security settings
- Instance-based endpoints
- Version consistence

As emblematic example of the usefulness of testing multiple deployment, the issue on
GeoKey/CM present in pt2 has been solved in PT3.

12 https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

 D3.5 Final release of WeGovNow platform prototype

141

During the definition of The WeGovNow Consolidated System Architecture
(deliverable D3.1), the technical teams of WeGovNow identified a set of requirements
to support the integration of WeGovNow components.

The engagement activities of stakeholders at the trial sites and the requirement
elicitation process brought us to the definition of a set of general needs, preliminary
requirements, daily-based use cases, and expectations based on the stakeholders’
intuition of WeGovNow technologies, summarised in deliverable D2.3, Annex II. The
collected inputs had been assessed by technical teams, under the light of the scope of
the project, of the availability of time and resources, of the existing components and
their workflows, resulting in a preliminary list of indications for further development
of WeGovNow platform. This list will be completed during the public validation trials.

The assessment (see Annex 6 “Extending WeGovNow platform”), was supported by
interviews with the goal of:

1. extend service scenarios from a specific application example to a general
pattern of use

2. mapping the fragmented daily use cases in steps of full service processes,
involving multiple actors in wide-range of time

3. collecting the missing information about the context and work procedures,
important for the adoption of the platform

4. extracting the underlying workflows from the service patterns
5. clustering similar workflows in common we-government processes
6. mapping workflows’ steps with components, to highlight missing features and

required extensions
7. validation of workflows and corresponding platform functionalities with local

municipalities willing to participate

The result of the assessment lead to clusters of requirements (see Annex 6 “Extending
WeGovNow platform”):

● Transversal requirements for the adoption of WeGovNow platform by local
municipalities,

● Functional requirements to implement the applicative scenarios through
WeGovNow components

The release of the final prototype version of the WeGovNow platform represents the
basis for setting up the three pilot instances to be publicly operated by each of the
three pilot municipalities for validation purposes during the next project year (2018).
From the activities described above, a potentially useful “nice to have” feature (an
area based calendar) has emerged that is considered to be implemented later in the
project, thereby relying on hands-on experiences gained with the pilot platform during
the validation trails.

This specific request does not strictly fall within WeGovNow scope because:

 D3.5 Final release of WeGovNow platform prototype

142

1. the use cases referred to coordination within groups and not between
organisation, which could be done through internal systems or many web
services

2. the booking of resources is managed by the manager of the resource and must
be integrated within existing systems and procedures

This hypothetical module, AreaCalendar, could provide a global calendar of the area,
shared by all actors and groups acting on a specific area (Exhibit 83). Area calendar
could be a tool to coordinate the scheduling, search and document public activities,
accessible via FirstLife.

Technically, area calendar could be a web module of FirstLife querying FirstLife APIs in
search of temporal events of a specific area, in a given time window defined by users.
To represent a wider range of urban activities, FirstLife is currently being extended to
support periodicity expression, such as:

● Every Friday between 15th of July and end of October
● Every 12 AM between Monday and Friday, Thursday excluded
● The first week of the month

FirstLife temporal extension is extensively described in “Temporal indexing of urban
entities”, Annex 7.

Exhibit 83: Concept of AreaCalendar: user will select an area of interest from FirstLife,
then go to AreaCalendar to explore the local activities on a calendar view.

 D3.5 Final release of WeGovNow platform prototype

143

The most likely option is to extend FirstLife’s calendar exploiting its events and
creating a direct link to and AreaViewer-based module such as LandingPage. A second
option is to extend LandingPage exploiting OnToMap logger, specifically the existing
area-based view of logs. A third option is to extend the Trusted Marketplace. This
module has been evaluated not strictly essential, because there are alternative ways
to have access to the information therefore it has not been developed as part of the
final prototype of WeGovNow, but it could be developed later in the project relying
on the evidence coming from the piloting of the platform, with a view to include it for
the further mainstreaming of WeGovNow beyond the ending of the pilot duration.

8.1. How to get WeGovNow

The WeGovNow project is made up of various software components that were
developed to enable running WeGovNow as an integrated online platform. All
software components developed / extended within the project are available as open
source solutions for downloading. The “How to get WeGovNow” section of the project
website provides all information to support those interested in implementing and / or
further developing WeGovNow open source software components. All information
and repositories about the civic participation platforms, as well as all integration
services are available at the address https://wegovnow.eu/how-to-get-
wegovnow.html . It contains all details on:

• WeGovNow civic participation software components
o LiquidFeedback
o ImproveMyCity
o FirstLife
o Offers and Requests and Trusted Marketplace
o Community Maps

• WeGovNow integration software components
o Unified WeGovNow User Management
o OnToMap Logger
o Navigation Bar
o OpenStreetMap Joomla Module for WeGovNow
o Data Quality Management System
o InputMap
o Landing Page
o AreaViewer
o Tile Server

 D3.5 Final release of WeGovNow platform prototype

144

Annexes

List of Annexes:

1. Logger Endpoint
2. UWUM integration
3. LiquidFeedback work report
4. UWUM work report
5. PgLatLon work report
6. Extending WeGovNow platform
7. Temporal indexing of Urban Entities
8. WeGovNow Environment Cheat Sheet
9. WeGovNow Pilot Vademecum Template

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

	

Annex 1
OnToMap Logger and Open Data Management

 D3.5 Final release of WeGovNow platform prototype

OnToMap Logger and Open Data Management

The OnToMap Logger has two primary roles in the WeGovNow platform:

• Centralised logging of user activities within the WeGovNow platform. The OnToMap Logger is a
centralised collector of the history of actions performed by WeGovNow users by interacting with
the WeGovNow applications. The goal is that of achieving a unified perspective on user
behaviour, e.g., to support cross-application personalization. Within the WeGovNow platform,
applications push their log data to a single component (the OnToMap Logger), which merges the
information managing a unified history of user activities. In order to effectively support
information retrieval, centralised logging has to be coupled with data integration. In fact, as
applications can adopt different terminologies, the user activities they log might seem to refer
to different types of information even when it is not the case. This leads to the second role of
the Logger, described in the following.

• Data integration across WeGovNow applications. The Logger provides a unified view on the data
shared in the WeGovNow platform, including the Open Data managed by OnToMap, in order to
enable WeGovNow applications to retrieve information collected about geographical objects,
initiatives, issues, and so forth to populate their maps. As applications can use diverse
conceptual models for representing geographical information, heterogeneous data descriptions
have to be reconciled. The OnToMap Logger addresses this issue by exploiting the semantic
representation of geographical information provided by OnToMap Ontology, that is used as an
interlingua among WeGovNow applications. The ontology formally represents the concepts in
which the data shared among the WeGovNow applications can be classified: the data categories
defined by an application can be mapped to the concepts of the ontology, at application
integration time, to define the rules for translating the information provided by the application
to the common ontology format.

The OnToMap and OTM Logger software can freely be downloaded from
https://ontomap.gitlab.io/wegovnow/

1 Open Data conversion and import
OnToMap stores public Open Data that can be exploited by the WeGovNow front-end applications
and visualized in the Area View, e.g., in order to integrate OpenStreet data with richer descriptions
of geographical items in the cities. OnToMap stores Open Data in a Triple Store as Linked Data, in
order to allow semantic queries on the data, starting from the domain representation provided by
the OnToMap Ontology. In order to import new Open Data, it must be mapped to the appropriate
concepts and properties from the OnToMap ontology and it must be converted to RDF (Resource
Description Framework), which is the standard format of Linked Data. The mapping and conversion
process will produce a RDF dataset, which will be imported in the Triple Store of OnTomap and made
available through the OnToMap Data Retrieval API. It is thus expected that each front-end
application that needs to visualize some Open Data from the set of information provided by the

 D3.5 Final release of WeGovNow platform prototype

Municipality invokes the OnToMap Data Retrieval API; the application will receive the data in
GeoJSON format, ready to be visualized on the geographical map.

The first step for importing new data consists in the mapping: the new dataset has to be associated
to one or more concepts from the ontology, and an analysis of the properties of the new data items
has to be performed in order to associate them to the properties from the ontology and, if
necessary, to exclude the properties that are considered as irrelevant. At the moment, mapping
new data to the ontology can only be performed manually, by analyzing the new data and matching
it to the ontology. As a matter of fact, this task can be hardly automatized because mappings have
to be done after having interpreted the meaning of data and of its properties. Most data is
represented as shapefiles, or as relational data. Therefore, starting from the metadata of the tables
describing data, the mappings can be defined.

1.1 Mapping example

The following image shows an example of the attribute data table of a shapefile:

Exhibit 1. Extract from an attribute table of a shapefile

The table shown in Exhibit 1 belongs to a shapefile containing data about parking bays in Southwark.
The OnToMap ontology already contains a suitable concept (ParkingLot), therefore it is not
necessary to add a new concept to the ontology.

The relevant attributes from the source shapefile are “street”, “featid”, “type” and “image”; they
can be mapped to the following ontology properties:

“street” -> “hasAddress”

“featid” -> “hasID”

 D3.5 Final release of WeGovNow platform prototype

“type” -> “hasCharacterization”

“image” -> “hasURL”

Once the mapping has been performed, the actual conversion process can take place. The data must
use EPSG:4326 as coordinate reference system; if necessary, GIS software (e.g. QGIS) can be used
to convert the reference system of the data to EPSG:4326.

The tool used so far for this task is GeoTriples (https://github.com/LinkedEOData/GeoTriples),
which supports spatially-enabled relational databases (e.g. PostGIS), ESRI shapefiles and XML, GML,
KML, JSON, GeoJSON and CSV documents as input.

GeoTriples provides a GUI which can be used to read the input data and generate a RML mapping,
which specifies the ontology concept/properties to which the input data and its properties are
mapped. The RML mapping generated by GeoTriples must then be edited to reflect the mappings
from the first step and to add additional properties not included in the input data (e.g. a label,
provenance, etc.). If the new data has to be available only to specific OnToMap instances, a
“applicationInstance” property has to be added to the mapping; this property may have one or more
values from a predetermined set, which at the moment includes “torino”, “sandona” and
“southwark” referring to the three pilot OnToMap instances. The last step consists in setting the
RDF vocabulary to GeoSPARQL and the reference system to 4326.

At this point, GeoTriples is able to correctly convert the input data into RDF; the output is a text file
containing the selected RDF serialization of the input data. This file is then ready to be imported in
a Triple Store. Currently, OnToMap doesn’t provide any API for loading new datasets, therefore the
new data has to be imported from the Triple Store itself. Parliament
(http://parliament.semwebcentral.org/), the Triple Store used in OnToMap, provides a web
interface for the import of new RDF data.

2 API access control
The OnToMap API uses X.509 client certificates (signed by LiquidFeedback) for authenticating client
applications. This authentication method guarantees the recognition of the identity of the client
applications in a reliable way; however, it is not trivial to implement it in certain cases (e.g. in the
case of AJAX requests performed directly from web pages). For this reason, a token-based
authentication method has been implemented; this authentication method allows applications to
get data from the logger and data retrieval APIs without submitting a client certificate with each
request.

A token can be obtained by submitting a GET request, including the application dev/test certificate,
to https://api.ontomap.eu/api/v1/access_token; a JSON object containing the token will be
included in the response. If a token must be replaced (in case it is lost or compromised), a POST
request, including the application dev/test certificate, to
https://api.ontomap.eu/api/v1/access_token/renew has to be submitted; the previous token will
be invalidated and the new token will be included in the response.

 D3.5 Final release of WeGovNow platform prototype

Once a token has been obtained, it can be used as the value of the “token” request parameter. An
example of the correct use of a token follows:

GET https://api.ontomap.eu/api/v1/logger/events?token=abc12345

3 Logger API

3.1 Workflow

In order to use the OnToMap Logger APIs to publish user activity events, client applications must
perform some preparatory steps, which are listed below:

1 Obtain a valid client certificate from LiquidFeedback;
2 Generate a valid mapping associating the application concepts and properties to those from

the OnToMap ontology;
3 Use the OnToMap Mapping APIs to submit the mappings;
4 (optional) obtain an access token for read-only access to the logger data, without using

certificates.

3.2 Concepts/properties mapping

Since the data submitted to the logger by the applications uses the application specific terminology,
mapping rules are necessary in order to translate the data to the OnToMap terminology and,
consequently, to ensure that the logging data from different applications uses a common
terminology.

The mapping rules must be inserted in a JSON document, which must be submitted to OnToMap
through the OnToMap API. The mapping rules consist in a list of concept mappings, which associate
each concept of the terminology used by the application to a concept of the OnToMap terminology.
For each concept it is possible to include a list of property mappings, each one associating a property
in the app terminology to one in the OTM terminology.

All of the concept and property mappings must refer to concepts and properties in the OnToMap
ontology.

When a property represents a measure, it is possible to include its measure unit, in order to avoid
ambiguities.

When new mapping rules are submitted, any previous rules associated to the application
performing the request are overwritten.

An example of valid mapping rules is reported below:

{
 "mappings": [
 {

 D3.5 Final release of WeGovNow platform prototype

 "app_concept": "ChildCare",
 "ontomap_concept": "Kindergarten",
 "properties": [
 {
 "app_property": "denominazione",
 "ontomap_property": "hasName"
 },
 {
 "app_property": "indirizzo",
 "ontomap_property": "hasAddress"
 },
 {
 "app_property": "telefono",
 "ontomap_property": "hasPhoneNumber"
 },
 {
 "app_property": "retta_mensile",
 "ontomap_property": "hasMonthlyRate",
 "unit": "EUR"
 }
]
 },
 {
 "app_concept": "Ristoranti",
 "ontomap_concept": "Restaurant"
 }
]
}

The mappings can be submitted to OnToMap by invoking the API described in the OnToMap
documentation: https://ontomap.eu/#api-Mapping_APIs-InsertMappingRules.

3.3 Event Logging

User activity events are represented as JSON objects including some mandatory properties (user
performing the action, timestamp of the action, type of action) and some optional information. All
the event properties are listed below.

Exhibit 2. Name, type and description of all properties used by the OnToMap Logger events

actor Int Required. The UWUM ID of the user performing the action.

timestamp Long Required. The Unix timestamp (in ms) of the action.

activity_type String Required. The user activity type.

activity_objects Array
An Array of GeoJSON Features.
The feature properties must include a hasType field (the concept to
which the feature belongs) and an external_url field (deep link to the

 D3.5 Final release of WeGovNow platform prototype

feature). The remaining properties (as well as the feature concept)
are expressed in the terminology of the client application, and must
be included in the mapping previously sent to the logger by the
application.
The properties can contain a additionalProperties object: every field
contained in this object will not be translated and stored as-is.
The same event must not contain multiple activity_objects having the
same external_url.

references Array

An Array of objects.
Every object contains two fields: external_url (String) and application
(String), referring to a specific feature managed by a specific
application.

visibility_details Array

An Array of objects.
Every object contains two fields: external_url (String) and hidden
(Boolean).
When the visibility_details field is included, the features
corresponding to the external_urls included (that must be managed
by the application sending the event) are hidden/shown from the
data retrieval results, based on the corresponding hidden value.
The visibility_details field is used when the action to be logged
implies a change of visibility for some features (for example, if a
feature is deleted or made private/public).
The visibility change of a feature is applied only if the timestamp of
the event is greater than or equal to the timestamp of the last logged
event containing a visibility change for that feature.

details Object An Object that can include further details regarding the user action to
be logged. This field is stored as-is.

The full documentation for the event logging API can be found at https://ontomap.eu/#api-
Logger_APIs-InsertEvents.

An example invocation of OnToMap Logger to store an event describing a user action is reported in
the following:

POST https://api.ontomap.eu/api/v1/logger/events
Request body:
{
 "event_list": [
 {
 "actor": 12345,
 "timestamp": 1485338648883,

 D3.5 Final release of WeGovNow platform prototype

 "activity_type": "object_created",
 "activity_objects": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 7.643340826034546,
 45.07558142970864
]
 },
 "properties": {
 "hasType": "Asili",
 "external_url": "http://app1.wegovnow.eu/Asili/1",
 "denominazione": "Asilo 1"
 }
 }
],
 "references": [
 {
 "application": "app1.wegovnow.eu",
 "external_url": "http://app1.wegovnow.eu/Asili/22"
 }
],
 "visibility_details": [
 {
 "external_url": "http://app1.wegovnow.eu/Asili/56",
 "hidden": true
 }
],
 "details": {}
 }
]
}

3.4 Event retrieval

OnToMap provides an API which returns user activity events stored in the logger. The events are
returned in reverse chronological order (from the most to the least recent one). In order to support
more specific queries, the API supports several filters which can be combined to return only events
meeting certain conditions. The following table lists all the filters implemented so far:

Exhibit 3. Name, type and description of all the filters supported by the OnToMap Logger

actor Int If specified, this filter selects the events related to actions
performed by the user with the specified UWUM ID.

application String If specified, the filter selects the events related to the
specified application.

 D3.5 Final release of WeGovNow platform prototype

activity_type String If specified, it selects the events related to actions of the
specified type.

concept String
If specified, it selects the events which contain
activity_objects belonging to the specified concept
(OnToMap terminology).

external_url String If specified, it selects the events which contain the
activity_object having the specified external_url.

reference_concept String
If specified, it selects the events which refer to
activity_objects belonging to the specified concept
(OnToMap terminology).

reference_external_url String If specified, it selects the events which refer to the
activity_object having the specified external_url.

subconcepts Boolean

If set to true and concept or reference_concept are
specified, this filter selects the events which contain or refer
to some activity_objects belonging to the specified concept
and its subconcepts. The filter has effect only if concept or
reference_concept are specified.
Default value: false

start_time Long
If specified, it selects the events having a timestamp greater
than or equal to the specified timestamp (Unix timestamp in
ms).

end_time Long
If specified, it selects the events having a timestamp less
than or equal to the specified timestamp (Unix timestamp in
ms).

boundingbox String

A string representing the coordinates of the North-East and
South-West points of a bounding box (using EPSG:4326 as
CRS).
If specified, this filter selects the events including or
referring to any activity_objects located in the specified
bounding box.
String format: NE_lng,NE_lat,SW_lng,SW_lat

Also in this case, we report a sample invocation and the returned data items:

GET
https://api.ontomap.eu/api/v1/logger/events?boundingbox=7.7,44.9,7
.5,45.1
{
 "event_list": [
 {
 "application": "app1.wegovnow.eu",

 D3.5 Final release of WeGovNow platform prototype

 "actor": 67890,
 "timestamp": 14967425487654,
 "activity_type": "profile_updated",
 },
 {
 "application": "app2.wegovnow.eu",
 "actor": 12345,
 "timestamp": 1485338648883,
 "activity_type": "object_created",
 "activity_objects": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 7.643340826034546,
 45.07558142970864
]
 },
 "properties": {
 "hasType": "Asili",
 "external_url": "http://app1.wegovnow.eu/Asili/1",
 "nome": "Asilo 1"
 }
 }
],
 "references": [
 {
 "application": "app1.wegovnow.eu",
 "external_url": "http://app1.wegovnow.eu/Asili/22"
 }
],
 "visibility_details": [
 {
 "external_url": "http://app1.wegovnow.eu/Asili/56",
 "hidden": true
 }
],
 "details": {
 "action_id": "76b66b1a-d846-4a56-8bfb-5aa5b4a3227f"
 }
 },
 {...}
]
}

3.5 Request Idempotency

Since the events don’t contain a unique ID, the logger will store and list an event multiple times if it
is submitted more than once. This could be an issue in case of network problems: if an application
submitting an event doesn’t receive any response from OnToMap, there are two possible cases: 1)
the request didn’t reach OnToMap at all, or 2) the request was processed successfully but the

 D3.5 Final release of WeGovNow platform prototype

response didn’t reach the client application. It would be safe to resubmit the request only in the
first case, however the client application has no way to verify whether the request was received or
not by OnToMap.

In order to mitigate this problem, the concept of idempotent requests has been introduced. To
make use of idempotent requests, it is sufficient to provide a “Idempotency-Key: <key>” request
header to the request used to submit events. The key is a client-generated random string; good
examples of possible keys are V4 UUIDs.

If a request contains an idempotency key, OnToMap will not save the contained events when a
request with the same key has been sent previously; it is then safe to resubmit requests when using
idempotency keys.

4 Rate limiting
In order to ensure its availability even under high request load, OnToMap relies on the Nginx web
server for request rate limiting.

As described in its documentation, Nginx can be configured to serve requests at a maximum fixed
rate (“limit_req_zone” and “limit_req” directives). Normally, requests exceeding the set rate are
dropped, unless the “burst” parameter is set. When the “burst” parameter is set, Nginx makes it
possible to store exceeding requests into a queue which is used as a buffer to manage the queries
in a delayed mode, respecting the maximum rate. When the queue is full, any additional requests
are rejected with a 429 error.

At the moment, the maximum request rate set for OnToMap is 20 requests for second, with a queue
length of 200 requests.

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

	

Annex 2
UWUM integration

 D3.5 Final release of WeGovNow platform prototype

UWUM Integration

 UWUM API endpoints

The UWUM endpoints for OAuth2 and the integration framework are available at the following

URLs:

 https://wegovnow-pt2.liquidfeedback.com/api/1/authorization

 https://wegovnow-pt2.liquidfeedback.com/api/1/token

 https://wegovnow-pt2.liquidfeedback.com/api/1/validate

 https://wegovnow-pt2.liquidfeedback.com/api/1/navigation

 https://wegovnow-pt2.liquidfeedback.com/api/1/style

 https://wegovnow-pt2.liquidfeedback.com/api/1/application (formerly "client")

UWUM scopes

Currently the following access scopes can be granted through UWUM (based on the access levels of

LiquidFeedback):

- “authentication” authenticate the current user by reading its

o static ID (id)

o current screen name (name)

- “identification” identify the current user by reading its unique ident string (identification).

Automatically implies scope "authentication"

- “notify_email” read the notification email address of the current user (notify_email)

- “read_contents” read any user generated content (w/o authorship, ratings and votes)

- “read_authors” read the author names of user generated content (author's static ID and

screen name)

- “read_ratings” read rating scores by other users

- “read_identities” read the identities of other users (identification)

- “read_profiles” read the profiles of other users (e.g. phone number, self-description)

- “post” post new content

- “rate” rate user generated content (e.g. thumbs up/down, "+1", support an initiative, rate a

suggestion)

- “vote” finally vote for/against user generated content in a decision (i.e. vote on an issue)

- “profile” read profile data of current user (e.g. phone number, self-description, ...)

- “settings” read current user's settings (e.g. notification settings, display contrast, ...)

- “update_name” modify user's screen name (name)

- “update_notify_email” modify user's notification email address (notify_email)

- “update_profile” modify profile data (e.g. phone number, self-description, ...)

- “update_settings” modify user settings (e.g. notification settings, display contrast, ...)

https://wegovnow-pt2.liquidfeedback.com/api/1/authorization
https://wegovnow-pt2.liquidfeedback.com/api/1/token
https://wegovnow-pt2.liquidfeedback.com/api/1/validate
https://wegovnow-pt2.liquidfeedback.com/api/1/navigation
https://wegovnow-pt2.liquidfeedback.com/api/1/style
https://wegovnow-pt2.liquidfeedback.com/api/1/application

 D3.5 Final release of WeGovNow platform prototype

Any of these scopes can be suffixed with "_detached" to request the scope for usage without the

need for the user to be logged in. This should only be used when it is really needed.

X.509 certificate for client identification

To create a trustworthy relationship between applications using UWUM and the

central UWUM component, we will use X.509 certificates. Therefor, any official WeGovNow client

is required to provide a valid X.509 certificate with each request made to the central UWUM service.

For this purpose we kindly ask all technical partners to provide X.509 certificate signing requests to

be signed by the UWUM Certificate Authority.

For more information on X.509 certificates and signing requests, please refer to the documentation

of your preferred TLS software such as LibreSSL or OpenSSL.

Integration Checklist

We will support all technical partners during UWUM integration. We defined a number of steps we

like to take together with every technical partner. In the following list, the term "client application"

refers to the application to be integrated with UWUM:

1. Availability of application via IPv4. The client application is available via a defined URL
using IPv4.

2. Availability of application via IPv6. The client application is also available using IPv6.

3. Serving via HTTPS. The client application service is encrypted via HTTPS.

4. Publicly trusted X.509 certificate for end users. The client application server provides a
publicly trusted X.509 certificate.

5. OAuth2 redirection endpoint defined. The URL of the OAuth2 redirection endpoint of the
client application has been determined and submitted to LiquidFeedback (FlexiGuided
GmbH).

6. Certificate signing request for UWUM. A private key for accessing the UWUM API has
been created. A corresponding certificate signing request (CSR) has been submitted to
LiquidFeedback (FlexiGuided GmbH).

7. Certificate signed by UWUM Certificate Authority. A signed certificate for the client
application has been sent back to the technical partner.

8. Successful X.509 secured connection. The client application has successfully established a
secured connection with the UWUM server, e.g. using LiquidFeedback's /info API endpoint.

9. Authorization endpoint access. The client application can redirect an end user to
the UWUM authorization endpoint.

 D3.5 Final release of WeGovNow platform prototype

10. Authorization endpoint error response handling. The client application is capable of
receiving authorization errors through its OAuth2 endpoint.

11. Authorization endpoint error display. The client application is able to display authorization
error messages (see 10) to the end user.

12. Successful authorization request and user identification. The client application made a
successful authorization request, received a UWUM access token, and determined the end
user ID.

13. Using access token for API calls to other components. The client application has
successfully performed a LiquidFeedback API call (e.g. to the /info API endpoint) using a
previously obtained UWUM access token.

14. Accepting access token from other components. The client application (acting as resource
server) provides at least one API call which accepts a UWUM access token for
authorization.

15. Access token verification. The client application (acting as resource server) is capable of
verifying the validity and scope of a UWUM access token passed from another component
(see 14).

16. Access token verification errors. The client application (acting as resource server) is
capable of handling error responses during validation of UWUM tokens (see 15).

17. Accepting access tokens as "Authorization" header. In conformance with RFC 6750
(Bearer Token Usage), the client application (acting as resource server)
accepts UWUM access tokens through the HTTP request header field "Authorization".

18. Cross-origin resource sharing (CORS). The client application (acting as resource server)
allows cross-origin resource sharing (CORS). See also https://www.w3.org/TR/cors/.

19. HTTP Strict Transport Security (HSTS). The client application ensures secure access by
using HTTP Strict Transport Security (HSTS) according to RFC 6797.

20. Cross-application navigation. The UWUM navigation bar has been successfully integrated
into the client application.

Usage of scopes / screen name

When acting as WeGovNow UWUM client without data exchange with other WeGovNow

applications, you will only need to request the "authentication" or the "identification" scope to be

able to identify the user. These scopes allow to retrieve some user related information (i.e.

numerical ID, identification string, screen name) to identify the user. When using the

"authentication" or the "identification" scope, the response of the /api/1/token endpoint can

optionally include an additional data structure providing member information. To request this

optional "member" data structure, you need to set the parameter "include_member" to 1 or "true".

Using the "identification" scope with the parameter "include_member" set to true, the response to

the /api/1/token endpoint could look like as follows:

https://www.w3.org/TR/cors/

 D3.5 Final release of WeGovNow platform prototype

{

 "access_token": "UFYPzKrz7JHIKATI",

 "expires_in": 3600,

 "refresh_token": "5QM8OL7AbdabXusG",

 "token_type": "bearer",

 "member_id": 123,

 "member": {

 "id": 123,

 "name": "Johnny",

 "identification": "John Doe"

 }

}

The field "id" of the "member" object contains the static numerical ID of the user (equal to

"member_id", i.e. redundant), the field "name" contains the screen name chosen by the user, the

field "identification" contains the identification string set by the authority which identified the user

as unique and eligible to use the WeGovNow application. In future, there may be more fields

according to the upcoming specification of the /api/1/member endpoint of LiquidFeedback.

The parameter "include_member" can also be used at the /api/1/validate and the /api/1/info

endpoints.

When acting as WeGovNow application using user related data or services of other WeGovNow

applications, you will need to request the appropriate scopes from UWUM for the types of actions

you want to perform with other WeGovNow applications (e.g. if you want to post new content to

other applications, request the scope "post"; if you want to rate content in other applications

request the scope "rate"; ...)

When acting as WeGovNow resource server (i.e. when offering user related data or services to other

WeGovNow applications) you need to check (via the /api/1/validate endpoint) the scopes of the

access token you received from the requesting application (e.g. if another application tries to post

content for a user, check for scope "post"; if another application tries to rate content, check for the

scope "rate").

Handling of updated user related data / user's email addresses

When a WeGovNow application wants to send notification emails to users, it is not adequate to

retrieve the email address only once from UWUM as the notification email can be changed by the

user at any time. Such a change needs to be reflected by all applications using this email address.

Therefore, an application needs to retrieve the current notification email address *directly* before

using it, in fact again before every usage.

 D3.5 Final release of WeGovNow platform prototype

For that purpose, the newly introduced API endpoint GET /api/1/notify_email can be used (using an

access token with the "notify_email" scope). To be able to retrieve the email address while the user

is not currently logged in, it will be neccessary to request the "notify_email_detached" scope when

identifying the user and to store the received refresh token permanently. The suffix "_detached"

requests a scope for detached usage, i.e. for usage even after the user logs out. Please note, when

exchanging a refresh token for an access token after the user has been logged out, you must

explicitly request the "*_detached" scope(s) you need, e.g. "notify_email_detached" using the

scope parameter of the /api/1/token endpoint.

Similar situations can occur related to other member properties stored in one application but used

in another one, e.g. the screen name. But these seem not to be as critical as to avoid using an

outdated email address. Such properties could be cached for a limited time before retrieving them

again from the application storing this property.

Sustainability, unregistered third-party clients and the future

Following these rules, even a complete new (non-registered, third-party) application can easily

make use of the WeGovNow infrastructure. The application can request certain scopes from UWUM

(which can be granted or declined by the user) and use the appropriate services of all other

WeGovNow applications. Using the upcoming application and service discovery, this is also possible

vice versa.

Scopes vs. User Privileges

NB: The scope does NOT grant a privilege to a user, it just means an application can trigger an action

within the scope *if* the user is authorized to perform the action. Example voting: an application

needs the scope "vote" to cast a vote on behalf of the user but casting a vote will only work if the

user has the necessary voting privileges. You can think of this as a matrix of scopes and user

privileges or (alternatively) as a logical AND conjunction. Scopes control that an application does

not misuse user privileges: while the trusted WeGovNow applications can request certain scopes

without user interaction, a non-trusted third-party application/client would trigger a request for a

confirmation by the user "Do you want to allow application X to cast votes on your behalf? [yes, one

time / yes, permanently]" (compare to permissions for third party Twitter/Facebook clients and

Android permissions).

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

Annex 3
LiquidFeedback work report

Second work report on extending the
LiquidFeedback Core

Jan Behrens, Andreas Nitsche, Björn Swierczek

April 19, 2017

© 2017 FlexiGuided GmbH, Berlin

1 Overview on tasks

1.1 Open tasks listed in work report from June 6, 2016

The first work report on extending the LiquidFeedback Core (dated June 6,
2016)1 listed the following three remaining tasks:

1. Adjustment of the background counting program (“lf update”) to reflect
the implemented changes for the new issue admission process.

2. Improvements to geospatial indexing and radial searches.

3. A complete dependency and license review of all WeGovNow software com-
ponents.

The first task of adjusting the background counting program “lf update”
has been completed (see section 3). As for the second task, the geospatial in-
dexing method has been completely revised with publication of pgLatLon (see
“Work report on ‘pgLatLon’, an alternative to PostGIS”2 from August 19, 2016).
pgLatLon’s geospatial index also contains support for radial searches using Post-
greSQL’s GiST interface. These and other features are also documented in
pgLatLon’s online documentation, which can be downloaded at its project page3.
The results of the third task (dependency and license review) have already been
documented in Deliverable D1.2 (“Consolidated conceptual & methodological
framework v2”) and will not be part of this work report.

1included as Appendix 3.5 to Deliverable D3.1, pages 171 through 190
2included as Appendix 7.1 to Deliverable D3.1, pages 212 through 227
3http://www.public-software-group.org/pgLatLon

1/10

http://www.public-software-group.org/pgLatLon

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

1.2 Additional tasks

1.2.1 Further adjustments to LiquidFeedback’s issue admission mech-
anism

At the time of writing the previous work report (June 6, 2016), LiquidFeedback’s
draft for an issue admission mechanism not depending on “subject area mem-
bership”4 was based on admitting the most supported issue within a given time
frame. Apart from difficulties with visualization, further considerations revealed
that such an approach lacks the ability to respond to dynamic changes in the
activity of the participants or their demand to discuss several issues at once while
no issues are being discussed at other times.

Nonetheless, LiquidFeedback’s previous issue admission system is unsuitable
for integration with WeGovNow (due to the “subject area memberships” that
are infeasible in the context of WeGovNow). Therefore, the new issue admission
system has been modified further, including necessary changes to the Liquid-
Feedback Core. The final issue admission system is described in section 2 of this
work report.

1.2.2 Adding necessary data structures for the Unified WeGovNow
User Management (UWUM)

The necessary data structures for UWUM had to be added to the LiquidFeedback
Core. The main work on the Core has already been done by end of August 2016,
when the UWUM work report5 was published. Section 5 below will give a list of
all UWUM related modifications to the LiquidFeedback Core.

1.2.3 Event logging

As part of LiquidFeedback’s API implementation, data structures and triggers
had to be created in the LiquidFeedback Core SQL schema. A list of all logged
events is given in section 4.

1.2.4 Providing update capabilities for LiquidFeedback 3

LiquidFeedback provides a smooth upgrade path from version 1.0.0 through the
most recent published version 3.2.2. Automatic SQL scripts convert the database
of one LiquidFeedback version to the next higher version. This enables users of

4See section 2.1 of the first work report on extending the LiquidFeedback Core.
5included as Appendix 2.1.2 to Deliverable D3.1, pages 124 through 151

2/10

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

LiquidFeedback (e.g. municipalities or organizations using the software) to ben-
efit from future updates. In order to keep this upgrade path intact, all modi-
fications to the LiquidFeedback Core database schema were condensed into an
upgrade file (“update script”) that may be executed on a LiquidFeedback v3.2.2
database, which then gets automatically updated to incorporate all changes made
for WeGovNow. The work done to create the update script is discussed in sec-
tion 6.

2 Modifications to LiquidFeedback’s issue admis-
sion system

Until LiquidFeedback version 3.2.2, user generated issues required to pass a cer-
tain supporter quorum in order to be further discussed. The quorum (e.g. 10%)
used a reference population that was determined through so-called “member-
ships” in subject areas.6 While this approach is limited in regard to scalability,7

it also does not integrate well with the architecture of WeGovNow and potentially
other integrated systems developed in the future.

After considering different approaches, including the approaches described in
[8] and [9], a simple yet powerful mechanism was created to control the admission
of issues for the discussion phase in LiquidFeedback, which will be described in
the following three subsections.

2.1 Issue quorum based on active participants

The first measure to modify the issue admission mechanism is to base the existing
supporter quorum on a population that is not calculated based on the “member-

6See section 4.9 (pages 71 and 72) in “The Principles of LiquidFeedback”, ISBN 978–3–
00–044795–2.

7A minority exceeding the supporter quorum may create a flood of issues, see “The
Evolution of Proportional Representation in LiquidFeedback” in “The Liquid Democ-
racy Journal on electronic participation, collective moderation, and voting systems”,
Issue 1. ISSN 2198–9532. http://www.liquid-democracy-journal.org/issue/1/

The_Liquid_Democracy_Journal-Issue001-04-The_evolution_of_proportional_

representation_in_LiquidFeedback.html
8“A Finite Discourse Space for an Infinite Number Of Participants” in “The Liquid

Democracy Journal on electronic participation, collective moderation, and voting systems”,
Issue 4. ISSN 2198–9532. http://www.liquid-democracy-journal.org/issue/4/

The_Liquid_Democracy_Journal-Issue004-02-A_Finite_Discourse_Space_for_an_

Infinite_Number_of_Participants.html
9“LiquidFeedback 2.x discontinued, LiquidFeedback 3.1 released, LiquidFeedback 4 devel-

opment started”, December 14, 2015, on the LiquidFeedback developer mailinglist. http:

//dev.liquidfeedback.org/pipermail/main/2015-December/000532.html

3/10

http://www.liquid-democracy-journal.org/issue/1/The_Liquid_Democracy_Journal-Issue001-04-The_evolution_of_proportional_representation_in_LiquidFeedback.html
http://www.liquid-democracy-journal.org/issue/1/The_Liquid_Democracy_Journal-Issue001-04-The_evolution_of_proportional_representation_in_LiquidFeedback.html
http://www.liquid-democracy-journal.org/issue/1/The_Liquid_Democracy_Journal-Issue001-04-The_evolution_of_proportional_representation_in_LiquidFeedback.html
http://www.liquid-democracy-journal.org/issue/4/The_Liquid_Democracy_Journal-Issue004-02-A_Finite_Discourse_Space_for_an_Infinite_Number_of_Participants.html
http://www.liquid-democracy-journal.org/issue/4/The_Liquid_Democracy_Journal-Issue004-02-A_Finite_Discourse_Space_for_an_Infinite_Number_of_Participants.html
http://www.liquid-democracy-journal.org/issue/4/The_Liquid_Democracy_Journal-Issue004-02-A_Finite_Discourse_Space_for_an_Infinite_Number_of_Participants.html
http://dev.liquidfeedback.org/pipermail/main/2015-December/000532.html
http://dev.liquidfeedback.org/pipermail/main/2015-December/000532.html

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

ship” in subject areas (as described in [6]), but rather on all active participants10.
This avoids the need of users to decide (and declare through LiquidFeedback’s
user interface) in which subject areas they plan to engage in.

Naturally, using the total count of active participants as reference for the
supporter quorum results in a higher barrier for new initiatives. Therefore, the
issue quorum should be set to a very low value (or may even be entirely disabled)
to also allow small minorities to engage in the proposition development and de-
cision making process of LiquidFeedback. At the same time, additional measures
are required to ensure managability for the participants when also possibly very
small minorities are able to influence the agenda. These measures are described
in the next subsection 2.2.

2.2 Issue limiter

The newly developed LiquidFeedback issue limiter ensures that the number of
open issues11 in a subject area does not grow unboundedly by using the number of
open issues as a feedback for dynamically adjusting the supporter count required
for admission of a new issue. For considerations on democratic fairness of such
an approach, especially in regard to protection of minorities, refer to [8].

The basic principle is that increasing the number of open issues by a given
absolute count increases the required supporter count by a certain (constant)
factor. In turn, issues that are closed (e.g. because of finally having been voted
upon) reduce the required suppoter count by the same factor. This results in
an exponential correlation between the number of open issues and the currently
required supporter count to let a new issue pass to discussion phase.

Using S to denote the required supporter count, B0 to denote the desired
supporter count when no issues are open, and n as the number of open issues,
the relation can (simplified) be described as follows:

S = B0 · f n
1

with f1 ∈ R+ being a configurable factor. In order to simplify configuration, the
formula can also be expressed as:

S = BN · f
n
N
−1

N

with an arbitrary N ∈ N, fN = f N
1 , and BN = B0 · fN . In this case, S is

the actual required supporter count, BN is the required supporter count if N

10This includes all participants which (a) are eligible to vote in a given unit and (b) have
logged in recently, i.e. within a configurable time in the recent past.

11In this context, we use the term “open issues” to refer to all issues that have been accepted
for discussion but not been closed yet, i.e. all issues that are in discussion, verification, or voting
phase.

4/10

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

issues were open, and fN is a factor (or divisor) by which the supporter count is
modified if N more (or less, respectively) issues are open.

The variables BN , fN , and N correspond to the following new columns of
the area (subject area) table in the LiquidFeedback Core SQL schema12:

BN quorum standard

fN quorum factor

N quorum issues

The described approach doesn’t yet take into account that different issues
may have different runtimes. Counterintuitively, open issues that have a shorter
runtime should be weighted more (i.e. a shorter runtime of an open issue should
increase the required supporter count) because an equillibrium of N open issues
that have a short runtime require more interactions of the participants than N
open issues with a longer runtime.

Taking different runtimes into account, the number S of required supporters
calculates as follows:

S = BN · f
n∗
N

−1

N

with

n∗ =
∑
i

(
di
D

)−a

where di is the total runtime of an issue i after admission for discussion phase
(i.e. discussion time + verification time + voting time), D is a reference runtime
(e.g. runtime of a default policy), and a ∈ [0, 1] is an exponent selecting how
much the runtimes of different issues are taken into account.

While the exponential relationship between open issues and the required sup-
porter count doesn’t need to take the total number of active participants into
account, the implementation of the issue limiter still allows to use a relative base
quorum (QN) instead of an absolute number of required supporters (BN). In
this case, BN = QN ·M , where M is the total number of active10 participants.

LiquidFeedback’s SQL schema12 names all the configurable variables as fol-
lows:

BN quorum standard (if quorum den is NULL)
fN quorum factor

N quorum issues

D quorum time

a quorum exponent

QN quorum standard divided by quorum den

12Refer to the definition of the area table in the LiquidFeedback Core SQL
schema file: http://www.public-software-group.org/mercurial/liquid_feedback_

core/file/5855ff9e5c8f/core.sql#l636

5/10

http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l636
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l636

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

Refer to the LiquidFeedback Core SQL schema file (particularly the defini-
tion of the “area quorum” view on lines 3164 through 3200)13 for the actual
implementation.

2.3 Resulting quorum

An issue passing from admission to discussion phase must fulfill both the demands
stated in subsection 2.1 and subsection 2.2. Therefore, the required supporter
count is always the maximum of the issue quorum (using the total number of
active participants as a reference) and the supporter count determined by the
issue limiter as described in subsection 2.2.

3 Vote and supporter counting

As already noted in subsection 1.1, LiquidFeedback’s background counting pro-
gram (“lf update”) had to be adjusted to reflect the implemented changes
for the new issue admission process. In addition to work on this program, the
snapshot mechanism14 needed further changes to be capable of documenting the
set of active10 participants at a particular point in time (the number of active
participants is required by the issue admission system described in section 2 of
this work report).

4 Event logging

The LiquidFeedback Core has been extended to additionally log the following
events:

• suggestion removed: A suggestion has been deleted.

• member activated: A participant has activated his or her account for the
first time.

• member removed: An account has been permanently disabled or removed.

• member active: The “active” status of a participant changed. (A par-
ticipant is marked inactive when he or she hasn’t log in for a configurable
length of time.)

13http://www.public-software-group.org/mercurial/liquid_feedback_core/

file/5855ff9e5c8f/core.sql#l3164
14See section 5.3 (pages 116 and 117) in “The Principles of LiquidFeedback”, ISBN 978–

3–00–044795–2.

6/10

http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l3164
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l3164

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

• member name updated: A participant changed his or her screen name.

• member profile updated: A participant updated his or her profile.

• member image updated: A participant updated his or her images.

• interest: A participant added or removed interest in an issue.

• initiator: A participant was added to or removed from the list of initia-
tors of an initiative.

• support: A participant supported an initiative or removed his or her sup-
port.

• support updated: A participant updated his or her supported revision to
the most recent revision of an initiative.

• suggestion rated: A suggestion has been rated by a participant.

• delegation: A delegation has been set or removed.

• contact: A contact has been published or unpublished.

These events complement the previously existing events:

• issue state changed: An issue passed from admission phase to discus-
sion phase, from discussion phase to verification phase, from verification
phase to voting phase, or got closed.

• initiative created in new issue: A new issue was created.

• initiative created in existing issue: A new initiative was created
in an existing issue.

• initiative revoked: An initiator revoked his or her initiative.

• new draft created: The initiative text has been updated.

• suggestion created: A new suggestion for an initiative was added.

The above logging functionality has been implemented using triggers. Due to
other existing triggers (including referential triggers), special care had to be taken
in regard to the trigger firing order. PostgreSQL fires triggers in the following
order:

7/10

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

1. BEFORE (regular trigger)

2. BEFORE (constraint trigger)

3. AFTER (constraint trigger)

4. AFTER (regular trigger)

Implementing the above event logging triggers as regular AFTER triggers solved
conflicts with other triggers. However, additional checks had to be implemented
in some event logging triggers to avoid event logging due to referential cascades;
e.g. deletion of old issues should not cause logging of revoked delegations for
those issues.15

5 UWUM

The following tables16 have been added to the LiquidFeedback Core SQL schema
in order to store UWUM related data:

• system application: to store OAuth 2.0 clients known to the operator
of a LiquidFeedback/WeGovNow platform

• system application redirect uri: to store additional (non-default)
redirect URIs for the OAuth 2.0 flow

• dynamic application scope: to store dynamically registered OAuth 2.0
clients with their scope

• member application: to store privileges granted by participants to par-
ticular OAuth 2.0 clients

• token: to store issued OAuth 2.0 tokens and authorization codes

• token scope: to temporarily store additional sets of scopes for autho-
rization codes when multiple different scopes were requested during the
Authorization Code flow17

15For an example, refer to the TG OP='DELETE' part of the write event delegation()

trigger in the LiquidFeedback Core SQL schema file on lines 2372 through 2428, which requires
that the corresponding organizational unit, subject area, or issue has not been deleted by the
time of execution of the logging trigger (in which case the deletion was not a user action but
the consequence of a referential constraint with ON DELETE CASCADE clause).

16See lines 356 through 483 of the LiquidFeedback Core SQL schema: http:

//www.public-software-group.org/mercurial/liquid_feedback_core/file/

5855ff9e5c8f/core.sql#l356
17an extension to the OAuth 2.0 standard; refer to subsection 2.13 of the UWUM work

report5

8/10

http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l356
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l356
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l356

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

Additional triggers18 ensure that tokens are automatically invalidated and/or
reduced in regard to their OAuth 2.0 scope when a participant logs out.19

Apart from the automatically generated PRIMARY KEY and UNIQUE in-
dices,20 additional indices were created where applicable to speed up database
operations.

6 Update capabilities from LiquidFeedback 3

In order to enable users of previous LiquidFeedback versions to incorporate the
implmented features, an update script has been created that converts a Liquid-
Feedback 3.2.2 database to the new format.

Because certain internal structures of LiquidFeedback were modified (such as
the snapshot system or parts of the session management), the process of creating
the update script had to be reviewed manually (with the help of automatic “diff”
tools). The resulting update script21 has a size of more than 140 kilobytes and
contains:

• 98 “ALTER TABLE” statements, consisting of

– 29 “ALTER TABLE ... ADD COLUMN” statements,

– 18 “ALTER TABLE ... DROP COLUMN” statements,

– 1 “ALTER TABLE ... ALTER COLUMN” statement,

– 30 “ALTER TABLE ... ADD CONSTRAINT”22 statements,

– 14 “ALTER TABLE ... DROP CONSTRAINT” statements,

– 4 “ALTER TABLE ... RENAME TO” statements,

– 2 “ALTER TABLE DISABLE/ENABLE TRIGGER” statements,

• 15 “CREATE TABLE” statements,

• 8 “DROP TABLE” statements,

18See lines 2509 through 2584 of the LiquidFeedback Core SQL schema:
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/

5855ff9e5c8f/core.sql#l2509
19See also subsection 2.9 on binding the lifetime of access and refresh tokens to a user’s

web session by default in the UWUM work report5.
20Note that PostgreSQL automatically creates indices for all PRIMARY KEY and UNIQUE

constraints in a table, but not on columns covered by FOREIGN KEY constraints.
21http://www.public-software-group.org/mercurial/liquid_feedback_core/

file/5855ff9e5c8f/update/core-update.v3.2.2-v4.0.0.sql
22including ADD PRIMARY KEY, ADD FOREIGN KEY, and ADD UNIQUE statements

9/10

http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l2509
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/core.sql#l2509
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/update/core-update.v3.2.2-v4.0.0.sql
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/5855ff9e5c8f/update/core-update.v3.2.2-v4.0.0.sql

2nd Work Report on LF Core Extension LiquidFeedback / FlexiGuided GmbH

• 25 “CREATE INDEX” statements,

• 3 “DROP INDEX” statements,

• 22 “CREATE (OR REPLACE) VIEW” statements,

• 9 “DROP VIEW” statements,

• 4 “CREATE (OR REPLACE) RULE” statements,

• 35 “CREATE (OR REPLACE) FUNCTION” statements,

• and 145 “COMMENT ON” statements.

7 Publication of results

The developed changesets (including the update script as mentioned in section 6)
have been submitted to the Public Software Group e. V on March 30, 2017 and
were published by the Public Software Group in the source code repository of
LiquidFeedback Core23 under the terms of the MIT-License24 on March 30, 2017.

© 2017 FlexiGuided GmbH, Berlin

23http://www.public-software-group.org/mercurial/liquid_feedback_core/

rev/5855ff9e5c8f
24http://www.public-software-group.org/mercurial/liquid_feedback_core/

file/d88fd3ae32d2/LICENSE

10/10

http://www.public-software-group.org/mercurial/liquid_feedback_core/rev/5855ff9e5c8f
http://www.public-software-group.org/mercurial/liquid_feedback_core/rev/5855ff9e5c8f
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/d88fd3ae32d2/LICENSE
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/d88fd3ae32d2/LICENSE

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

Annex 4
UWUM work report

Work report on Unified WeGovNow User
Management (UWUM) development

Jan Behrens, Axel Kistner, Andreas Nitsche, Björn Swierczek

2016-12-12

© 2016 FlexiGuided GmbH, Berlin

1 Presentation of UWUM in Berlin

A first draft of UWUM has been presented in the kick-off meeting “Connecting
The Bits” on April 14, 2016 in Berlin. The overall idea was to build a single-
sign-on (SSO) solution on OAuth 2.0’s Authorization Code1 flow.

For access tokens, the use of bearer tokens2 was proposed. Furthermore,
it was agreed on that TLS is to be used to secure all communication between
UWUM and other components.

In addition to single-sign-on, UWUM’s capabilities were planned to include:

• a style endpoint, which allows applications to retrieve style information
(e.g. a color scheme),

• a navigation endpoint, which allows applications to incorporate a common
nagivation bar into their user interfaces, and

• a service discovery endpoint, which allows applications to retrieve a list of
other applications within the system and their capabilities/protocols.

This way, WeGovNow is designed to be a modular system that may be extended
with different services which are all connected through UWUM.

It was agreed that UWUM will be implemented by LiquidFeedback such that
it is possible to use synergetic effects between the necessary creation of an API
for LiquidFeedback and the newly created features required by UWUM.

1See https://tools.ietf.org/html/rfc6749#section-1.3.1 for a short overview on
the Authorization Code flow and https://tools.ietf.org/html/rfc6749#section-4.1

for a detailed description.
2https://tools.ietf.org/html/rfc6750

1/27

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6750

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2 Authentication and Authorization

For reasons of interoperability and security, we aimed to create an implementation
that is fully compliant with RFC 6749.3 In this section, the extensions necessary
in addition to that document will be explained below. All functionality has been
implemented by the time of publishing this work report except where otherwise
noted.

2.1 Roles

RFC 6749 defines several roles in subsection 1.1.4 The UWUM component as
implemented by LiquidFeedback takes the role of the “authorization server”.
Other WeGovNow components will take the role of “clients” but may also act
as “resource server” for other components.

2.2 Choice of protocol flow

UWUM requires the Authorization Code flow1 for secure user authentication, i.e.
when used for single-sign-on (SSO). (Note that subsection 10.16 in RFC 6749
explains why the Implicit flow5 as defined by OAuth 2.0 is not suitable for secure
user authentication.6)

The Implicit flow5 is still supported for clients which only require authorization
but do not rely on secure user authentication (e.g. pure JavaScript clients which
access other components but do not store themselves any resources which would
need to be protected by SSO).

2.3 Types of clients

RFC 6749 distinguishes between “confidential clients” (which are capable of
secure client authentication, e.g. by maintaining confidentiality of their client
credentials) and “public clients” (which are incapable of secure client authenti-
cation). UWUM requires all clients which use OAuth 2.0’s Authorization Code1

flow (and thus receive long-lasting refresh tokens) to be capable of secure au-
thentication; i.e. every use of the token endpoint (see subsections 2.7 and 2.8)
will require client authentication (except when an access token scope downgrade

3https://tools.ietf.org/html/rfc6749
4https://tools.ietf.org/html/rfc6749#section-1.1
5See https://tools.ietf.org/html/rfc6749#section-1.3.2 for a short overview on

the Implicit flow and https://tools.ietf.org/html/rfc6749#section-4.2 for a detailed
description.

6https://tools.ietf.org/html/rfc6749#section-10.16

2/27

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749#section-1.1
https://tools.ietf.org/html/rfc6749#section-1.3.2
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-10.16

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

is performed, see subsection 2.14). The use of “public clients” is only supported
for those clients which utilize the Implicit5 flow because these clients will not
handle any long-lasting tokens.

2.4 Client registration

Client registration is mentioned in section 2 of RFC 6749, even though the
standard explicitly states that “the means through which the client registers with
the authorization server are beyond the scope of [the] specification”.56 UWUM
provides two methods of client registration:

• registering clients through the municipality (or their technical administra-
tion) or an organization running a particular installation of WeGovNow,

• registration of any other (“dynamic”) client on a per-user basis by each user
who wishes to use that client to access WeGovNow (machine accessibility).

These two registration methods are described in the following two subsections
respectively.

2.4.1 Clients approved by the municipality

Clients approved by the municipality authenticate through TLS (X.509) certifi-
cates which are signed by the municipality or a certificate authority acting on
their behalf. For example, the operator of the UWUM server could issue a cer-
tificate to the operator of each respective client. Furthermore, the operator of
the UWUM server configures a list of automatically granted access scopes7 for
the particular client (not every client has the same automatically granted access
scopes, e.g. some clients might not require voting rights). Any other access scope
may be granted on a per-user basis by the respective end-user or be disallowed
by the municipality for a particular client (through white or black lists).

This results in the following information being stored per client:

• name of client,

• OAuth 2.0 client identifier (client id),

• redirect URI(s)8,

• common name (CN) of the TLS certificate,

7https://tools.ietf.org/html/rfc6749#section-3.3
8See https://tools.ietf.org/html/rfc6749#section-3.1.2 for redirection URIs.

One redirect URI is the default redirect URI, other redirect URIs may be selected through the
redirect uri parameter, see: https://tools.ietf.org/html/rfc6749#section-4.1.1

3/27

https://tools.ietf.org/html/rfc6749#section-3.3
https://tools.ietf.org/html/rfc6749#section-3.1.2
https://tools.ietf.org/html/rfc6749#section-4.1.1

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

• automatically granted scopes7,

• white list of scopes (optional),

• black list of scopes (optional, i.e. may be empty).

2.4.2 Dynamic clients

For the sake of machine accessibility, it would be nice to allow unregistered
clients. Unfortunately, OAuth 2.0 requires some sort of client registration (at
least) for the following security reasons:

• allowing capability to authenticate a client,9 in order

– to avoid refresh token abuse by a third party in case of accidentially
exposed refresh tokens,10

– to avoid authorization code abuse (which could expose access and re-
fresh tokens to a malicious 3rd party) in case of exposed authorization
codes,11

• restriction of choice of the redirect URI12, in order

– to avoid redirection URI manipulation,13

– to avoid open redirector attacks.14

In order to be able to provide an open platform, however, it should still be
possible to use clients which have not been explicitly approved by the operator
of the WeGovNow platform. Assuming there will be more than one WeGovNow
installation (e.g. run by different municipalities, each operating their own system),
this is necessary in order to enable third parties to provide generic clients that
can be used by any WeGovNow platform, even those not known to the operator
of the client.

Consequently, registration of these clients should happen dynamically without
further human interaction.15 This requires to automatically establish a channel

9See https://tools.ietf.org/html/rfc6749#section-2.3 and https://tools.

ietf.org/html/rfc6749#section-10.1
10https://tools.ietf.org/html/rfc6749#section-10.4
11https://tools.ietf.org/html/rfc6749#section-10.5
12https://tools.ietf.org/html/rfc6749#section-3.1.2
13https://tools.ietf.org/html/rfc6749#section-10.6
14https://tools.ietf.org/html/rfc6749#section-10.15
15We assume that every user of WeGovNow is legally entitled to use any client of his or her

choice to access his or her data and to perform actions. In cases where a particular operator
of LiquidFeedback (e.g. a municipality) wants to decline this right, the use of dynamic clients
could be disabled.

4/27

https://tools.ietf.org/html/rfc6749#section-2.3
https://tools.ietf.org/html/rfc6749#section-10.1
https://tools.ietf.org/html/rfc6749#section-10.1
https://tools.ietf.org/html/rfc6749#section-10.4
https://tools.ietf.org/html/rfc6749#section-10.5
https://tools.ietf.org/html/rfc6749#section-3.1.2
https://tools.ietf.org/html/rfc6749#section-10.6
https://tools.ietf.org/html/rfc6749#section-10.15

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

of trust between the client and the UWUM server through secure authentication.
UWUM relies on the following mechanism to archive secure authentication of a
dynamic client:

• a dynamic client is only referenced by its domain, and

• at the choice of each client, registration is performed either

– by adding a certain entry to the domain’s DNS zone16 or

– temporarily through a REST API call to the UWUM server with a
client-side TLS (X.509) certificate issued to the respective domain
and signed by a publicly trusted certificate authority (e.g. “Let’s En-
crypt”)17.

Taking into account that it cannot be outruled that TLS certificates could
accidentially be exposed to a malicious 3rd party and considering that there might
be at least one publicly trusted CA which is vulnerable to a state-level attack,18

we restrict the redirection URI12 to the following static path on the web server’s
root level:

/liquidfeedback client redirection endpoint

This repels any attempts of “authorization code redirection URI manipulation”
as explaiend in subsection 10.6 of section 10 (“Security considerations”) of
RFC 6749 (“The OAuth 2.0 Authorization Framework”)13 even in cases where
dynamic client registration could be forged.

Any client that cannot follow the above redirection URI convention must be
registered by the municipality or organization running a particular installation of
WeGovNow (see subsection 2.4.1).

As an additional security mechanism, the dynamic registration is always done
for a set of access token scopes7 to be used with a particular OAuth 2.0 flow.
Thus a client’s redirection endpoint registered for the Authorization Code flow
cannot be used by the Implicit flow or vice versa unless the registration is broad-
ened accordingly.

16A TXT DNS resource record needs to be added to the subdomain
“ liquidfeedback client” of the respective domain which must include a so-called
magic string (namely “dynamic client v1”) as first entry.

17The operator of LiquidFeedback is therefore required to decide on a list of trusted CA’s.
Many operating systems already ship with such a list of root certificates.

18Note that similar security considerations also apply to DNS and the risk of DNS cache
poisoning or similar attack vectors. This could, however, be fixed by DNSSEC such that future
versions of UWUM might lift the described restrictions for domains which are cryptographically
secured.

5/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

The operator (e.g. a municipality) may still decide to disallow the use of
non-approved (dynamic) clients completely. This would, however, limit machine
accessibility and render the platform less open for extensions and unforseen use
cases. An appropriate configuration option will be provided which can also be
used to limit the access token scope of dynamic clients (using a white or black
list).

Unless dynamic clients are entirely disabled, an additional security warning
will be displayed to the user when authorizing such a client. The user will be
requested to verify that:

• the client domain is trustworthy,

• the client domain is used to host a legit application to access LiquidFeed-
back,

• the spelling of the domain name (whose client is going to be authorized)
is correct,

• the granted scope of access (access token scope) is intended by the user.

Clients which want to avoid these warnings must be approved by the munici-
pality or organization that is operating the LiquidFeedback system (see subsec-
tion 2.4.1).

2.5 Access token types

As previously mentioned, bearer tokens2 as defined in RFC 6750 will be used as
access tokens. Therefore, the access token type (“token type”)19 returned by
UWUM is always set to “bearer”.

2.6 Access token scopes

The following set of generic20 access token scopes7 has been specified:

authentication: Authenticate the current user by reading its unique static ID
and current screen name.

19https://tools.ietf.org/html/rfc6749#section-7.1
20Application specific scopes could be introduced if they turn out to be necessary in the

future. It would also be thinkable for dynamic clients acting as a resource server to provide a
set of application specific scopes as part of their registration. Further security analysis would
be required for such an extension. See also subsection 5.8 for considerations on generic versus
application specific scopes.

6/27

https://tools.ietf.org/html/rfc6749#section-7.1

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

identification: Identify the current user by reading its unique identification
string. Automatically implies scope “authentication”.

notify email: Read the notification e-mail address of the current user.

read contents: Read any user generated content (without authorship, ratings
and votes).

read authors: Read the author names of user generated content (author’s
static ID and screen name).

read ratings: Read ratings (see scope “rate” below) by other users.

read identities: Read the identities (identification strings) of other users.

read profiles: Read the profiles of other users (e.g. phone number, self-
description, etc).

post: Post new content.

rate: Rate user generated content (e.g. thumbs up/down, “+1”, support an
initiative, rate a suggestion).

vote: Finally vote for/against user generated content in a decision (e.g. vote on
an issue in LiquidFeedback)

profile: Read profile data of current user (e.g. phone number, self-description,
etc).

settings: Read current user’s settings (e.g. notification settings, display con-
trast, etc).

update name: Modify user’s screen name.

update notify email: Modify user’s notification e-mail address.

update profile: Modify profile data (e.g. phone number, self-description, etc).

update settings: Modify user settings (e.g. notification settings, display con-
trast, etc).

Note that any of these scopes can also be suffixed with “ detached” to request
the scope for usage also when the user is not logged in (which will be explained
in subsection 2.9).

7/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.7 User authentication (single-sign-on)

OAuth 2.0 by itself is not suitable for user authentication. Both the Authorization
Code flow1 and the Implicit flow5 can be extended to provice user authentica-
tion and thus allow to implement a single-sign-on (SSO) system. Because the
Implicit flow would require additional security mechanisms to be implemented at
client side (where bad implementations result in security vulnerabilities),6 UWUM
extends the Authorization Code flow for the purpose of implementing an SSO
solution as described in the following.

In order to protect against authorization code substitution attacks, the UWUM
server checks the OAuth 2.0 client identity before accepting an authorization
code.21 This is both a requirement stated in subsection 4.1.3 of RFC 6749
(“The OAuth 2.0 Authorization Framework”)22 and a recommended counter-
measure to avoid authorization code substitution attacks in subsection 4.4.1.13
of RFC 6819 (“OAuth 2.0 Threat Model and Security Considerations”)23.

The Access Token Response24 of the OAuth 2.0 Authorization Code flow
gets extended with the field “member id” which returns the LiquidFeedback
member ID of the signed-in user. OAuth 2.0 clients not aware of this extension
are requested to ignore this field as stated in subsection 5.1 of RFC 6749.25

Nonetheless, these clients may still pass the returned access token to the validate
endpoint (see next section) in order to determine the member id of the user who
has logged in.

2.8 Endpoints

RFC 6749 defines two endpoint URIs at the authorization server side: the “autho-
rization endpoint”26 and the “token endpoint”27. These are defined as follows:

• https://server name/api/1/authorization (GET)

• https://server name/api/1/token (POST)28

Note that a base path may be appended to the server name component if appli-
cable.

21Note that, if the client is authenticating with the UWUM server, the client id parameter
can be ommitted by the client when accessing the token endpoint (see next footnote).

22https://tools.ietf.org/html/rfc6749#section-4.1.3
23https://tools.ietf.org/html/rfc6819#section-4.4.1.13
24https://tools.ietf.org/html/rfc6749#section-4.1.4
25https://tools.ietf.org/html/rfc6749#section-5.1
26https://tools.ietf.org/html/rfc6749#section-3.1
27https://tools.ietf.org/html/rfc6749#section-3.2
28The server name for the token endpoint may differ for those requests where TLS client

certificates are used. See subsection 5.2 for explanation.

8/27

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6819#section-4.4.1.13
https://tools.ietf.org/html/rfc6749#section-4.1.4
https://tools.ietf.org/html/rfc6749#section-5.1
https://tools.ietf.org/html/rfc6749#section-3.1
https://tools.ietf.org/html/rfc6749#section-3.2

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

RFC 6749 does not specify any method for a resource server to “ensure that
an access token presented to it by a given client was issued to that client by the
authorization server”.29 Therefore, an additional validation endpoint has to be
specified:

• https://server name/api/1/validate (POST)

The validation endpoint does not require any parameters except the access token
(bearer token) to be passed using the mechanisms described in section 2 of
RFC 6750.30 It returns a JSON object with the following fields:

– scope: a space separated list of scopes7 associated with the access token
(with any “ detached” suffix stripped off, see next subsection 2.9),

– member id: an integer set to the id of the user who logged in,

– logged in: a boolean set to false if the user has meanwhile logged out.

Note that the scope of an access token may change when the user logs out. This
is explained in the following subsection 2.9. Subsection 2.12 will pick up the
issue of user logout again.

There may be situations where an OAuth 2.0 client wants to check whether
a user is currently logged in without actually forcing the user’s web browser
to perform a login if no user was logged in. To provide this functionality, a
4th endpoint (also out of scope of the OAuth 2.0 specification) is added at the
authorization server side:

• https://server name/api/1/session (POST)

This “session” endpoint can be accessed directly by a user’s web browser (through
a script performing a CORS31 HTTP request with credentials). Its usage is
further explained in subsection 2.10.

2.9 Binding lifetime of access and refresh tokens to a users
web session by default

Access tokens have an expiry time after which they will be invalidated.32 In
addition to the maximum access token lifetime returned in the Access Token
Response,24 UWUM additionally limits the lifetime of both access tokens and

29See section 10.3 of the RFC: https://tools.ietf.org/html/rfc6749#section-10.3
30https://tools.ietf.org/html/rfc6750#section-2
31Cross-origin resource sharing, see https://www.w3.org/TR/cors/
32https://tools.ietf.org/html/rfc6749#section-5.1

9/27

https://tools.ietf.org/html/rfc6749#section-10.3
https://tools.ietf.org/html/rfc6750#section-2
https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc6749#section-5.1

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

refresh tokens to the user’s web session at the LiquidFeedback (UWUM) server
by default (i.e. if the user logs out, the access tokens and refresh tokens will be
immediately invalidated).

Some clients, however, require access longer than the user’s login session. For
this purpose, access token scopes7 with the suffix “ detached” may be requested
(e.g. “vote detached” instead of “vote”). Whether an application may request
these scopes (as well as which scopes may be requested for detached access)
depends on the configuration for the particular client, or – in case of dynamic
clients – on the configuration for all dynamic clients. An access or refresh token
that contains only detached scopes will not be invalidated on user logout. Access
tokens, however, will still be invalidated when their expiry time (as denoted by the
“expires in” field in the Access Token Response24) has elapsed, in which case
a refresh token must be used to obtain a new access token. Access and refresh
tokens which contain both detached and non-detached scopes will only have
their non-detached scopes removed on user logout instead of being invalidated
completely.

Other than the behavior described above, the “ detached” scopes behave as
any other scope for the authorization26 and token27 endpoint. Only the validation
endpoint (“api/1/validate”) will strip the suffix “ detached” from the scope
field in its response because it doesn’t matter for a validating resource server
whether a scope has been granted detached from a web session or not.33

Even if the token lifetime is bound to the web session (i.e. when only non-
detached scopes are requested), a user’s logged in web browser may still auto-
matically re-authorize the client whenever he or she is logged in at UWUM and
visits the client’s website. If such a client was authorized by the user, the per-
mission can be revoked by the user at any time using a designated configuration
dialog provided by the UWUM server.

2.10 Checking user login without triggering a login

An interactive UWUM client application may want to determine whether a user
is logged in without actually triggering a login. OAuth 2.0 does not provide such
a mechnaism on its own.34 UWUM therefore provides an additional “session”
endpoint (https://server name/api/1/session, see subsection 2.8) to allow

33Neither RFC 6749 nor RFC 6750 are violated because the authorization and token endpoint
treat detached scopes like any other scope and a validation endpoint is not covered by these
RFCs.

34Also, extending the authorization endpoint by accepting a “prompt” parameter as done by
OpenID Connect is not feasible for user-registered clients because non-logged-in users could
be redirected to malicious clients registered by other users, making the system susceptible to
open redirector phishing attacks. See subsection 5.5

10/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

web applications to gather information about the current login status of a user
without actually triggering any (interactive) login or permission grant procedure.
This endpoint is directly accessed by the user’s web browser through an XML-
HttpRequest (XHR) call while setting the “withCredentials” option of the
XMLHttpRequest object to true.

The call does not need any parameters and should not have any additional
request headers set35. It returns a JSON object with the “member id” attribute
set to the ID of the current user (or to null if there is no logged-in user or
if a user-registered client is not authorized to obtain the login status). Since
the request is done by the user’s web browser, the answer is not authoritative
for the UWUM client and must only be used as a hint. A returned user ID
MUST still be confirmed via the regular OAuth 2.0 procedure using the
authorization endpoint! In this case, the authorization endpoint will not show
a login window (because the user is already logged in).36

2.11 Caching the login state

A successful user authentication could be cached in the session store of the
UWUM client (usually at the web server side in conjunction with a cookie).
This, however, can create confusion for the user because he or she might show
up as being logged into the system after having logged out or vice versa. A
possible solution is to use the “session” endpoint as discussed in the previous
subsection 2.10 through a JavaScript which then notifies the server side of the
UWUM client by redirecting the web browser if a reconfirmation of the user’s
login status is necessary.

In either case, UWUM clients should reconfirm that the user has not logged
out at least immediately before any state changing request (e.g. posting, rating,
voting, etc.) by using the validation endpoint (see subsection 2.8). This check
cannot be done directy by the web browser due to security reasons (as also
explained in the previous subsection 2.10).

35Not setting additional request headers avoids CORS pre-flight requests, see https://www.
w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0

36There is a chance for a race-condition if the user simultaneously logs out. This could be
solved by returning an authorization code through a CORS call. However, implementation of
such a protocol is out of scope for WeGovNow and would require further security analysis.

11/27

https://www.w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0
https://www.w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.12 Logout

2.12.1 Checking for logout

As explained in subsection 2.9, an access or refresh token is automatically inval-
idated on logout if only non-detached scopes have been requested. For all other
cases, the “logged in” boolean field returned by the validation endpoint (see
subsection 2.8) may be used to detect a logout by the user.

The “session” endpoint (as further explained in subsection 2.10) may also
be used to check whether a user might have logged out (without consuming
much resources on the server-side of the UWUM client).37 Note, however, that
a request from the web browser to the session endpoint is not suitable for the
UWUM client application to validate that a user is really logged in or to securely
confirm that his or her session has really ended (see subsection 2.10).

2.12.2 Performing logout

Depending on design criteria, logout could be performed either

• through a direct link in the UWUM navigation bar or

• through a link in the UWUM navigation bar which leads to a user page
where there is a second link for the actual logout procedure.

Technical implementation requirements differ for these two cases. In the first
case, the logout is performed in the context of any UWUM client; while in the
second case, the final logout link or button can be displayed in the context of
a web page returned by the UWUM server (which is a different origin). Due to
protection against cross-site-request-forgery (CSRF), an appropriate access token
or dedicated logout token would need to be part of the link in the first case (the
case of using a direct link for logout). In this case, an appropriate OAuth 2.0
access token scope would need to be added to avoid unwanted exposure of the
logout token (or an access token with respective scope).

A decision on this issue has not been taken yet; user interface design con-
siderations and technical security considerations should determine which of the
discussed two approaches is more suitable. Also refer to subsection 5.10, which
discusses certain design limitations due to privilege separation.

37A future extension of UWUM could also allow UWUM clients (or their JavaScript compo-
nents at the web browser side) to issue a request which is held open by the UWUM server for
a set amount of time in order to allow pushing a change of the user’s login status just-in-time
(see also subsection 5.4).

12/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.13 Requesting several access token scopes at once

To avoid unnecessary delays, a client may (as an extension to RFC 6749) request
several access token scopes7 (i.e. sets of access ranges) at once by using the
parameters “scope1”, “scope2”, etc. in the Authorization Request. The corre-
sponding result parameter “access token” will have “1”, “2”, etc. appended
to its name (e.g. “access token1” etc.). Note that counting must start with “1”.
It is, however, allowed to include an optional non-numbered “scope” parameter
in addition to “scope1”, “scope2”, etc. The result parameters “token type”
and “expires in” are never numbered or duplicated due to size limitations in
the Implicit flow (maximum URL length) but always relate to all returned access
tokens.

The described behavior of this subsection is not part of OAuth 2.0. Using
this extension is entirely optional for the client.

2.14 Downgrading access token scopes

As an extension to RFC 6749, the token endpoint has been extended in such
a way that it can be used to downgrade access token scopes. This feature is
important for meta-APIs because according to RFC 6749, the only way to obtain
a new access token without the user’s web browser is to provide a refresh token to
the token endpoint.38 Refresh tokens, however, are bound to a particular client
and must not be shared by the client with any other party but the authorization
server.39

A meta-API might receive an access token with a broader scope7 than the
scope necessary for calls made by the meta-API provider to another resource
server. Using a greater scope than necessary for calls to resource servers, however,
weakens the overall security of the system. In order to allow meta-API providers
to downgrade the scope prior to using the access token, the token endpoint27

accepts the string “access token” as value for the “grant type” parameter,
which will tell the UWUM server that an access token (and not an authorization
code or refresh token) is being presented to receive a new access token with a
downgraded scope. The access token has to be provided according to the rules
stated in section 2 of RFC 6750,30 and one or more scopes must be requested
through the “scope”, “scope1”, etc. parameters (see subsection 2.13 for details
on requesting several scopes at once). Client authentication is not required. The
old access token with the broader scope will not be invalidated and may still
be used in future requests (e.g. to receive another access token with a different
scope).

38https://tools.ietf.org/html/rfc6749#section-6
39https://tools.ietf.org/html/rfc6749#section-10.4

13/27

https://tools.ietf.org/html/rfc6749#section-6
https://tools.ietf.org/html/rfc6749#section-10.4

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

For security reasons, downgrading an access token scope will never extend
the token lifetime, i.e. the returned access token will have the same remaining
maximum lifetime than the access token presented to the token endpoint.40

2.15 Additional measures to prevent refresh token abuse

Conforming with section 10.4 of RFC 6749,41 the UWUM server (LiquidFeed-
back) ensures that refresh tokens are bound to the client they have been issued
to. As also suggested in subsection 10.4 of RFC 6749, further means to restrict
refresh token abuse are implemented. Refresh tokens are replaced periodically
and using a refresh token invalidates the corresponding scope7 of all other previ-
ously issued refresh tokens, with the exception that refresh tokens which are still
bound to a logged in user are unaffected.42 An additional grace period avoids
problems due to race conditions or aborted connections. This approach is sim-
ilar to the example given in subsection 10.4 of RFC 6749 while being resistant
against accidental race-conditions or connection aborts and allowing for a more
flexible usage (e.g. different subsystems of the same client may store different
refresh tokens indepenently).

2.16 Required CORS support for resource servers

Because RFC 6750 requires bearer tokens2 to be accepted through the HTTP
header “Authorization”,43 and because the “Authorization” header is not in
the list of “simple response headers” as defined by the W3C recommendation on
cross-origin resource sharing,44 it is inevitable for all resource servers to support
cross-origin resource sharing (CORS) with the respective “Access-Control-
Allow-Headers” option45 set to be able to fulfill the requirements of RFC 6750.
Every UWUM component acting as a resource server should therefore enable and
configure CORS accordingly. See https://www.w3.org/TR/cors/ for details.

40This is the reason why client authentication would not grant any extra security here and
thusly can be omitted.

41https://tools.ietf.org/html/rfc6749#section-10.4
42This is implemented by downgrading “ detached” scopes to their corresponding non-

detached scopes.
43https://tools.ietf.org/html/rfc6750#section-2.1
44https://www.w3.org/TR/cors/#terminology
45https://www.w3.org/TR/cors/#access-control-allow-headers-response-header

14/27

https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc6749#section-10.4
https://tools.ietf.org/html/rfc6750#section-2.1
https://www.w3.org/TR/cors/#terminology
https://www.w3.org/TR/cors/#access-control-allow-headers-response-header

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.17 HSTS

We recommend to use HTTP Strict Transport Security (HSTS)46 for all WeGov-
Now components to increase security.

3 Additional endpoints for integration

Beyond user authentication and authorization, three more API endpoints are
being defined for backend and UI integration:

• a “navigation” endpoint to incorporate a navigation bar,

• a “style” endpoint to retrieve style information, and

• a “client” endpoint for applicaton and service discovery.

Prototypes for the navigation and style endpoint have been implemented; the
client endpoint for application and service discovery is currently only a stub.

3.1 Navigation endpoint

In order to integrate all WeGovNow applications in such a way that they look
and feel like a single application, all WeGovNow applications share a common
navigation bar. The “navigation” endpoint of the UWUM server returns this
navigation bar to be included by each WeGovNow application. This way, modi-
fications to the navigation bar can made at a central place without the need to
change every single application.

Either a login button or the user name with a link to a user page (where
logout is possible) is included in the navigation bar, depending on whether an
access token is provided when calling the endpoint.47 For the login button, an
alternative URL may be provided by the caller of the navigation endpoint. This
login URL may either be the authorization endpoint of the UWUM server with
an appropriate “state” HTTP GET parameter included (note that the value
must be percent-encoded48) or an URL provided by the UWUM client which
initiates the OAuth 2.0 authorization and authentication procedure as described
in section 2 of this document. Alternatively a unique placeholder (e.g. a GUID)

46https://tools.ietf.org/html/rfc6797
47Also a dynamic popup menu is thinkable. However, issues with JavaScript and privi-

lege separation in case of animated submenus according to Material Design require further
consideration. Refer to subsection 5.10 in that matter.

48https://tools.ietf.org/html/rfc3986#section-2.1

15/27

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc3986#section-2.1

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

can be passed as login URL to allow caching of the rendered navigation bar and
replacing the login URL locally at the UWUM client.49

Whether a structured JSON document or a pre-rendered HTML snippet is
returned can be selected by another parameter passed to the navigation endpoint.
A pre-rendered HTML snipped may be either returned encapsulated in a JSON
response or raw for usage with the HTML5 include tag.

When the “client id” parameter is provided to the navigation endpoint,
the corresponding client tab gets highlighted (or marked as active in case of the
structured JSON document response).

It is planned to collapse the navigation bar on small screens. This feature
might interfere with application specific menus; refer to subsection 5.12 for that
matter.

3.2 Style endpoint

The style endpoint provides basic color definitions for a primary and an accent
color as 8-bit RGB triplet to be able to customize the unified visual look of
all WeGovNow applications for a particular installation by central configuration.
Additional colors can be derived from these two base colors. If the UWUM
server gets configured with colors from the Material Design color palette, the
corresponding Material Design color name of the primary and the accent color is
also provided.

3.3 Endpoint for application and service discovery

The endpoint “client” is supposed to return a list of all system applications
and, if an access token is provided, a list of all registered dynamic clients for the
corresponding user. Implementation of this endpoint will require storing the base
URL of all system applications at the UWUM server.

Further discussion with OntoMap is required for specification and implemen-
tation of this endpoint.

4 Test platform

A test platform has been created in mid September to start integration with the
other consortium partners.

49Note that the characters “<”, “>”, “&”, as well as the quotation mark character should be
avoided in a placeholder string because these characters would get HTML entity encoded as
described in subsection 8.1.4 of the HTML5 standard, see: https://www.w3.org/TR/html5/
syntax.html#character-references

16/27

https://www.w3.org/TR/html5/syntax.html#character-references
https://www.w3.org/TR/html5/syntax.html#character-references

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

4.1 Benchmarks

The following benchmarks for integration have been defined, whose fulfillments
have been published in the weekly status reports.

Client URLs established A client application (resource server and/or relying
party) has been installed and its base URL and redirection endpoint50 has
been communicated to the consortium.

SSL key and certificate for end-users A private key and a publicly trusted
SSL certificate has been created for the end-user web interface and SSL
connections to that interface have been successfully tested.

Certificate signing request (CSR) for UWUM API A private key for ac-
cessing the UWUM API and a corresponding certificate signing request
(CSR) has been created and submitted to FlexiGuided GmbH (LiquidFeed-
back).

SSL certificate for UWUM API A signed certificate for the UWUM API client
key has been sent back to the consortium member and their client appli-
cation has successfully established a secured connection with the UWUM
server.

Authorization endpoint accessed The client application can redirect an end-
user to the UWUM authorization endpoint.51

Authorization endpoint error response handling The client application is ca-
pable of receiving authorization errors52 through its redirection endpoint50

and displaying it to the end-user.

Access token request (including end-user identification) The client appli-
cation has successfully received an authorization code and identified the
end-user through an access token request.53

Access token request error handling The client application is capable of prop-
erly processing errors during the access token request.54

Using access tokens for API calls to other components The client appli-
cation has successfully used an access token to perform a LiquidFeedback
API call.

50https://tools.ietf.org/html/rfc6749#section-3.1.2
51https://tools.ietf.org/html/rfc6749#section-4.1.1
52https://tools.ietf.org/html/rfc6749#section-4.1.2.1
53https://tools.ietf.org/html/rfc6749#section-4.1.3
54https://tools.ietf.org/html/rfc6749#section-5.2

17/27

https://tools.ietf.org/html/rfc6749#section-3.1.2
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.2.1
https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-5.2

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Access token verification The client application is capable of verifying the
validity and scope of an access token.

Accepting access tokens from other components The client application pro-
vides at least one API call where an access token is used for authorization.

Accepting access tokens as “Authorization” header In conformance with
RFC 6750 (Bearer Token Usage), the client application (resource server)
accepts access tokens through the authorization request header field.55

Cross-origin resource sharing The client application allows cross-origin re-
source sharing (CORS) as described in subsection 2.16 of this document.

Cross-application navigation The UWUM navigation bar has been success-
fully integrated into the client application.

IPv6 IPv6 capabilities have been tested.

5 Technical challenges

In this section, we will describe obstacles encountered during implementation and
during integration with the consortium partners as well as respective solutions.

5.1 Third party clients (non-registered clients vs. dynamic
registration)

OAuth 2.0 demands client registration but does not specify how such client
registration is to be implemented.

“Before initiating the protocol, the client registers with the autho-
rization server. The means through which the client registers with
the authorization server are beyond the scope of this specification
but typically involve end-user interaction with an HTML registration
form.”56

Manual client registration, however, is only suitable for a service-centered
approach where a software provides only a single service (e.g. Facebook, Google,
Twitter, etc). An open source solution, however, could be installed at several
sites by different service providers. It is therefore not sufficient to register a client

55https://tools.ietf.org/html/rfc6750#section-2.1
56Ed. D. Hardt: The OAuth 2.0 Authorization Framework, October 2012. Section 2 (Client

Registration), https://tools.ietf.org/html/rfc6749#section-2

18/27

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750#section-2.1
https://tools.ietf.org/html/rfc6749#section-2

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

at a single service provider if this client shall be usable for any service provider
using the UWUM server software.

One possible solution would be the creation of a central (i.e. world-wide)
UWUM client registry. Such central client registry, however, could be a single
point of failure and would empower a central authority to control usage of the
UWUM protocol (e.g. it would be possible to block certain clients). We consider
this approach contrary to the concepts of open source and open data.

Therefore, we implemented a dynamic client registration protocol that keeps
implementational complexity at a minimum while providing good security prop-
erties which outperforms many other solutions for client registration due to re-
quiring direct access to the DNS zone of the domain (for adding a TXT record)
or credentials (a publicly trusted TLS certificate with corresponding key) that
should be accessible only by the domain owner. Dynamic client registration is
described in subsection 2.4.2 of this document.

5.2 TLS client side certificates and web browser behavior

Web server software often offers three different settings for handling TLS client
certificates:

• client-side certificates disabled,

• optional client-side certificate,

• mandatory client-side certificate.

Often these settings can be made only on a per-domain basis (i.e. for each virtual
host). Furthermore, enabling client-side certificates (even if set to “optional”)
will cause web browsers to show up a dialoge when accessing pages on that
domain.

For these reasons, a separate hostname has to be used for API endpoints
when a TLS client-side certificate is to be provided (which affects the token end-
point27). The UWUM server will have to provide a configuration endpoint where
dynamic clients may retrieve a deviant domain for the token endpoint; and dy-
namic UWUM clients (see subsection 2.4.2) will have to query this configuration
endpoint prior to using the token endpoint).

5.3 Multi-domain certificates

TLS certificates may be issued for more than one domain using the “Subject
Alternative Name” (SAN) extension. The current implementation of Liquid-
Feedback, however, relies on an HTTP reverse proxy to include the distinguished

19/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

name (DN)57 of the certificate in a designated HTTP header. Some reverse proxy
software, namely “NGINX” which is recommended for use with LiquidFeedback,
does not properly support transmitting a domain list from the SAN extension. In
case of “NGINX”, header line folding58 is used to pass multiple domain names
from a TLS certificate to the respective backend (e.g. LiquidFeedback). Header
line folding, however, has recently been deprecated by RFC 7230,59 and it is not
supported by LiquidFeedback (and not even by “NGINX” for incoming requests).
The problem of header line folding in the context of multi-domain TLS certifi-
cates has also been discussed in the “NGINX” issue tracker under ticket #857.60

The issue is currently not classified as bug61 and it is unclear when a patch will
be incorporated into the software.

For the technical difficulties explained above, we refrained from supporting
multi-domain certificates at this stage. In case of UWUM clients approved by the
municipality or operator of LiquidFeedback, this shouldn’t be a problem anyway
because the certificate authority will be under the control of the operator, such
that it is easy to create a certificate using the DN/CN property. For dynamically
registered clients, an alternative mechanism using DNS TXT records is available
(see subsection 2.4.2).

If multi-domain certificates are supported in the future, it is vital that the
token endpoint requires the “client id” parameter to be set for all clients au-
thenticating with such a multi-domain certificate. This way, code substitution
attacks23 can be repelled. (Note that RFC 6749 requires the “client id” pa-
rameter to be set only if the client is not authenticating with the authorization
server;22 but this does not work for multi-domain certificates.)

5.4 Outdated logins

While a successful OAuth 2.0 authorization procedure (using the Authorization
Code flow1) can be used to confirm that a user is logged in at the particular time
of the Access Token Response24, an UWUM client obviously can’t assume that
the login will be still valid at any later time.

UWUM currently provides two methods to check if a user has logged out;
these are explained in subsection 2.12.1 of this work report. Considerations in re-
gard to purposeful caching of the user’s login status are found in subsection 2.11.

Even if no caching of the login status is performed, there is still the possibility
that a user opens WeGovNow with two different browser windows or browser tabs.

57The DN contains a single domain as CN (common name).
58https://tools.ietf.org/html/rfc2616#section-2.2
59https://tools.ietf.org/html/rfc7230#appendix-A.2
60https://trac.nginx.org/nginx/ticket/857
61https://trac.nginx.org/nginx/ticket/857#comment:2

20/27

https://tools.ietf.org/html/rfc2616#section-2.2
https://tools.ietf.org/html/rfc7230#appendix-A.2
https://trac.nginx.org/nginx/ticket/857
https://trac.nginx.org/nginx/ticket/857#comment:2

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

He or she might then log out in one window and afterwards switch to the other
window where the logout has not been noticed yet, which creates confusion for
the user. A possible solution is to regularly check if the user has logged out by
utilizing the cross-origin-resource-sharing (CORS) XML-HttpRequest (XHR) as
explained in subsection 2.10.

Regular requests to detect logouts, however, cause unnecessary resource con-
sumption for all involved components. A better approach would be to have a
permanent TCP connection between the web browser and the UWUM server (or
alternatively between the UWUM client and the UWUM server if at the same
time there is a permanent connection between the web browser and the UWUM
client). There are different technologies thinkable for this approach. One method
is to keep an XML-HttpRequest open for a set amount of time during which the
server is capable of sending a message directly to the web browser. (The request
has to be repeated after timeout or after a message has been received, whichever
happens first.) Another technique would be to use WebSockets. None of these
additional techniques have been implemented yet.

5.5 Susceptibility to open redirector phishing attacks when
allowing login checks through web browser redirection

Subsection 2.10 mentioned that an interactive UWUM client application may
want to determine whether a user is logged in without actually triggering a login.
OAuth 2.0 does not provide such a mechnaism on its own, and our research
concluded that any form of redirection-based mechanism for providing this func-
tionality62 would be susceptible to open redirector phishing attacks as described
in subsection 4.2.4 of RFC 6819 (“OAuth 2.0 Threat Model and Security Consid-
erations”)63 as long as third parties are capable of registering a malicious client
with a corresponding redirection URI12 that is under the control of the third
party.

The previously mentioned subsection of the threat model and security con-
siderations document (RFC 6819) suggests client registration with redirect URI
registration (and avoiding redirects to any non-registered redirect URI)64 as only
countermeasure for this threat. However, this countermeasure only works when
manual client registration (and manual approval through the operator of the
UWUM server) is mandatory. It particularly fails if dynamic client registration
(e.g. as described in subsections 2.4.2 and 5.1 of this work report) is allowed.

62e.g. accepting a “prompt” parameter as done by OpenID Connect, see http://openid.

net/specs/openid-connect-core-1_0.html#AuthRequest
63https://tools.ietf.org/html/rfc6819#section-4.2.4
64https://tools.ietf.org/html/rfc6819#section-5.2.3.5

21/27

http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://tools.ietf.org/html/rfc6819#section-4.2.4
https://tools.ietf.org/html/rfc6819#section-5.2.3.5

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Luckily, the technique of cross-origin resource sharing (CORS) allowed for the
development of an alternative to the redirect-based approach. Subsection 2.10
explains the mechanism.

5.6 Handling of updated user related data (e.g. user’s e-
mail addresses)

When a WeGovNow application wants to send notification e-mails to users, it
is not adequate to retrieve the e-mail address only once from UWUM as the
notification e-mail can be changed by the user at any time. Such a change
needs to be reflected by all applications using this e-mail address. Therefore
an application needs to retrieve the current notification e-mail address directly
before using it, in fact again before every usage.

For that purpose, another API endpoint /api/1/notify email (GET) can
be used (using an access token with the “notify email” scope). To be able
to retrieve the e-mail address while the user is not currently logged in, it will be
necessary to request the “notify email detached” scope when identifying the
user and to store the received refresh token permanently. The suffix “ detached”
requests a scope for detached usage, i.e. for usage even after the user logs out.65

Similar situations can occur related to other member properties stored in one
application but used in another one, e.g. the screen name. But these seem not to
be as critical as to avoid using an outdated e-mail address. Such properties could
be cached for a limited time before retrieving them again from the application
storing this property.

5.7 Race conditions with refresh token rotation

As suggested in subsection 10.4 of RFC 6749,41 refresh token rotation is employed
to provide better security properties (e.g. in case of exposed refresh tokens and
client certificates, or in case of the existence of a single compromized certificate
authority which would render authentication of dynamic clients insecure).

Unfortunately, RFC 6749 does not specify how old refresh tokens are invali-
dated. Section 6 of RFC 6749 only says that66

• the authorization server MAY issue a new refresh token, in which case

• the client MUST discard the old refresh token and replace it with the new
refresh token, and

65Note that when exchanging a refresh token for an access token after the user has been
logged out, an UWUM client must also explicitly request the ”* detached” scope(s) it needs,
e.g. “notify email detached” using the scope parameter of the /api/1/token endpoint.

66https://tools.ietf.org/html/rfc6749#section-6

22/27

https://tools.ietf.org/html/rfc6749#section-6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

• the authorization server MAY revoke the old refresh token.

Always revoking the old refresh token after transmission can have a bad effect
on system stability, considering that responses might be interrupted. Further-
more, multiple backends of an UWUM client could simultaneously access the
token endpoint. Such legit accesses by two legit backends of the same client
would need to be distinguished from accesses by a legit client and a malicious
third party who obtained a copy of a refresh token.

Subsection 2.15 explains the mechanisms employed by the UWUM server to
mitigate the risk of refresh token abuse while solving the problems stated above.

5.8 Creating a set of suitable access token scopes

A useful set of access token scopes7 is a vital aspect of privilege separation. From
a security point of view, scopes should be as fine-graded as possible, particularly
there should be different scopes for different applications (e.g. an application
that wishes to rate user contributions in application X does not need an access
token that allows to rate user contributions in application Y). Extensibility, on the
other hand, would be complicated if access token scopes always refer to a single
application (i.e. a single resource server in this context). Furthermore, it is a goal
that the WeGovNow platform looks and feels like a single integrated application.
When users grant access scopes to third party clients, such application-based
scopes would be difficult to understand for the user, which by itself can have bad
influence on the overall system security.

We therefore decided to provide a set of generic access token scopes as listed
in subsection 2.6. For future extensions, see footnote 20.

5.9 Misconceptions regarding scopes vs. user privileges

Scopes must not be mistaken for user privileges. I.e. a scope does not grant a
privilege to a user; it just means an application can trigger an action within the
scope if the user is authorized to perform the action. For example, an application
needs the scope “vote” to cast a vote on behalf of the user but casting a vote
will only work if the user has the necessary voting privileges.

Programmers of UWUM clients must keep these differences in mind and
execute an action only if both the scope and the users privileges are sufficent for
the respective action.

23/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

5.10 JavaScript integration and privilege separation

Dynamically sharing JavaScript code between UWUM clients or between the
UWUM server and an UWUM client violates privilege separation because it would
enable one component to execute code in the security context of another origin.
For example, one application ‘A’ could send a harmful JavaScript to be included
in a web page returned by another application ‘B’ which then discloses the session
cookie for application ‘B’ to application ‘A’.

For this reason, the common navigation bar as returned by the navigation
endpoint (see subsection 3.1) currently does not include any JavaScript code.
UWUM clients may therefore even consider to sanitize the returned HTML code
in such a way that any JavaScript is removed or rejected.

Interface design decisions, however, might suggest to use JavaScript for the
navigation bar. Material design, for example, requires popup-menus to be ani-
mated, which cannot be done with CSS alone. Another reason for JavaScript
might be dynamic modifications of the navigation bar (e.g. collapsing the nav-
igation bar to a menu icon) depending on the screen size or the device of the
user. Also other integration techniques might suggest the use of JavaScript.

An alternative to dynamically provided JavaScripts by the UWUM server
would be a common library to be included locally by each WeGovNow component.
Whenever this library is updated, administrators of each component can look
over it before incorporating it. While this approach provides proper privilege
separation, its downside would be the administrative overhead.

At least in regard to the navigation bar, it would eventually need to be decided
whether

• there will be no JavaScript used by the navigation bar,

• the UWUM server will dynamically return JavaScript code for the naviga-
tion bar, or

• each WeGovNow component needs to include a pre-distributed JavaScript.

5.11 Logout through navigation bar

The common WeGovNow navigation bar (as returned by the “navigation”
endpoint, see subsection 3.1) should also include a possibility to logout. Due to
protection against cross-site-request-forgery (CSRF) and because the navigation
bar will be included in responses from different web servers (different “origins”),
a simple logout link does not work. Subsection 2.12.2 deals with different ap-
proaches to this problem.

24/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

5.12 Collapsing navigation bar and application menu

In case of mobile devices, it may be desirable to collapse the navigation bar to
a single menu icon displayed in the corner of the screen. Despite the technical
problems in regard to JavaScript (which are discussed in subsection 5.10), there
is also a challenge in regard to a potentially existent second menu bar which is
provided by the particular application currently selected.

It could be difficult for the user if two menu icons are being displayed (i.e. a
meta-menu, which covers the entries of the navigation bar, and an application
specific menu). A potential solution could be to combine both menus into a single
one. In this case, however, the considerations of subsection 5.10 still apply.

5.13 UWUM clients without user interface

In addition to UWUM clients having a user interface, there are also WeGovNow
applications thinkable which do not have any (end-)user interface. This includes
both meta-API providers as well as other service components. In the context of
WeGovNow, one meta-API provider could be OntoMap.

The current UWUM specification enables the development of meta-APIs be-
cause access tokens are not bound to a particular UWUM client and can be
downgraded in regard to their access token scope (of which the latter is impor-
tant for security, see subsection 2.14). Thus, a meta-API can simply require its
callers to provide a valid access token which then can either be used directly or
downgraded for further requests performed by the meta-API provider to other
resource servers.

Nonetheless, the mechanisms described in this work report still require priv-
ileges that are bound to a particular user. For UWUM clients requiring access
privileges that are not tied to a particular user (e.g. clients which aggregate data
of all users and publish that information), the Client Credentials Grant67 should
be implemented.

5.14 Client authentication for resource servers

While UWUM enables (a) its clients to authenticate users and (b) resource servers
to verify user authorization (both explained in section 2), it does not enable
resource servers to authenticate clients. Such client authentication might be
required by applications that want to establish a trusted channel to another
application independently of user authorization.68

67https://tools.ietf.org/html/rfc6749#section-4.4
68An example could be OntoMap logging actions executed at other applications (which are

then reported to OntoMap by the respective application with client authentication enabled).

25/27

https://tools.ietf.org/html/rfc6749#section-4.4

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Unfortunately, neither OAuth 2.0 nor UWUM enable applications to verify
the identity of another application. Even if OAuth 2.0 uses client authentication
for a variety of reasons69 for the authorization endpoint26, it doesn’t provide such
an authentication method to other applications. Extending the OAuth 2.0 work
flow in this matter (e.g. by returning the client id when an access token is
presented to the validation endpoint70) would rise some issues:

• Tieing an access token (a bearer token2 in case of UWUM) to a particular
client does not make sense in case of applications that behave both as
an OAuth 2.0 resource server and as a client (e.g. meta-API providers
or applications which provide an API and have to perform further API
calls to complete a requested action). Also, client impersonation would
be possible. To give an example: if a received access token is tied to a
particular client A, and if application A uses this access token to perform an
action at application B, then application B would be able to impersonate
application A. Furthermore, application B couldn’t use the access token to
authenticate as application B when performing further requests at the API
of another application C.

• Using a custom scope to identify the origin of a request (e.g. a scope
“I am appX”) would also enable client impersonation (e.g. any applica-
tion who receives an access token with the scope “I am appX” could
then impersonate application X). An alternative could be to use scopes
that reflect better the particular action to be performed, e.g. a scope
“write appXs log at appY”. It is self-evident that this would increase
the number of scopes drastically (possibly quadradically), which, in turn,
might create a maintenance/configuration mess. Other than that, there
is another problem with using scopes for client authentication: following
RFC 6750, there can only be one bearer token per request.2 If a client
needs to use a received access token for an API call at another compo-
nent, then this access token could not be used to authenticate that client
because it won’t have the necessary scope. One possible solution could
be to allow adding scopes to an existing access token or extend RFC 6750
in such a way that multiple access tokens could be used per request. All
those solutions, however, go far beyond OAuth 2.0 and would require extra
implementation work for all consortium partners. In the end, the created
solution wouldn’t be OAuth 2.0 anymore.

69See beginning of subsection 2.4.2 of this report.
70See subsection2.8 for an explanation of the validation endpoint.

26/27

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

The straight-forward way of authenticating clients is to use the existing mech-
anism already employed by all UWUM clients: TLS client-side certificates. This,
however, requires TLS client certificate checking by each resource server that
needs to authenticate other clients.

© 2016 FlexiGuided GmbH, Berlin

27/27

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

Annex 5
PgLatLon work report

Work report on “pgLatLon”,
an alternative to PostGIS

Jan Behrens, Andreas Nitsche

2016-08-19

© 2016 FlexiGuided GmbH, Berlin

1 Previous work

As explained in our work report dated June 6, 2016, one created extension for
the LiquidFeedback backend (“LiquidFeedback Core”) was the feature of geo-
tagging user input as well as allowing geographic searches (geospatial indexing).
A common solution for geospatial data processing with PostgreSQL is PostGIS
(see http://postgis.net/). Using PostGIS to fulfill that task, however, was
ruled out because of the following reasons:

• PostGIS would introduce a long chain of software dependencies.

• Many of PostGIS’ features were unnecessary for LiquidFeedback’s needs.
At the same time, the number of functions that actually support the WGS-
84 spheroid is very limited in PostGIS.

• Viral/incompatible licensing.

Therefore, a lightweight alternative for database indexing and distance measure-
ment (based on a 2-dimensional Taylor series approximation1 and PostgreSQL’s
existing geometric data types2) was implemented. The associated results have
been published on May 29, 2016 under the terms of the MIT-License.3

1See page 11 of work report June 6, 2016.
2See pages 11 through 13 of work report June 6, 2016.
3See subsection 2.2.13 of work report June 6, 2016.

1/15

http://postgis.net/

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

1.1 Limitations of the implementation as of June 6, 2016

1. While the implementation as of June 6, 2016 was sufficient for local geospa-
tial data processing, it wasn’t capable of performing correct calculations
for large-area applications (e.g. spanning multiple continents).4

2. A particular side-effect of the Taylor-based approach were reversal-symmetry
anomalies that could confuse the user of a system when comparing different
views on the same dataset.5

3. Another drawback was the necessity to include a certain syntax in all
geospatial queries (see lines 318 through 339, lines 524 through 544, and
lines 606 through 625 in the patched core.sql file6).

4. Nearest neighbor searches could only be performed iteratively.7

As we will show in this document, all previous limitations could meanwhile be
lifted by implementing a GiST-based index using fractal curves.

1.2 Ideas presented in the work report June 6, 2016

The work report of June 6, 2016 already contained an outlook in regard to
possible improvements on page 20:

Keeping future applications in mind, it would be beneficial to im-
prove the implemented methods for geospatial indexing and radial
searches by providing an alternative formula for distance calculation
on the WGS-84 ellipsoid that could serve as a compromise between
the complexity of Vincenty’s formulae and the simplicity of local
Taylor approximation. Utilizing the nearest neighbor search capa-
bilities of PostgreSQLs GiST indexing framework would be another
improvement.

4Examples for the accuracy have been given in subsection 2.2.8 of work report June 6, 2016
and will be revisited in this work report, subsection 2.1.4

5See subsection 2.2.9 of work report June 6, 2016.
6http://www.public-software-group.org/mercurial/liquid_feedback_core/

file/3e28fd842354/core.sql
7See subsection 2.2.11 of work report June 6, 2016.

2/15

http://www.public-software-group.org/mercurial/liquid_feedback_core/file/3e28fd842354/core.sql
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/3e28fd842354/core.sql

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

2 Implemented improvements

2.1 A new formula for approximating distances between
two points on the WGS-84 spheroid

The idea of developing a new algorithm for distance calculation has been pursued
and successfully implemented.

2.1.1 The general idea

The general idea to quickly calculate distances on the WGS-84 spheroid is to
calculate the exact coordinates of two points in a three dimensional (Euclidean)
coordinate system first. Then, the exact tunnel distance can be calculated using
the Pythagorean theorem. After the tunnel distance has been determined, a
sphere model of earth (with radius r = 2a+b

3
) is used8 to transform a tunnel

distance into a distance on the surface of earth.

ssurface = 2r · arcsin
(stunnel

2r

)
The error for small distances tends towards zero. (Note that for stunnel = 0,

the derivative of the above function is 1, and therefore ssurface ≈ stunnel.) For
medium distances, the above formula serves as a good approximation for the
surface distance on the WGS-84 spheroid. In case of antipodal points, however,
this method becomes numerically unstable,9 which is why some modifications
are necessary as explained in the following subsection 2.1.2.

2.1.2 Using antipodal points for huge distances

For nearly antipodal points, the distance between two points A and B can be
approximated by calculating a third point B on earth by reflecting B through
the earth’s center. Then the method described in subsection 2.1.1 can be used to
calculate a distance ssurface between A and B (i.e. between A and the reflection
of B). The approximate distance between the original points A and B then
calculates as ssurface = πr − ssurface.

Cross-fading is done for points that are neither close to another nor nearly
antipodal. This ensures monotonic behavior of the algorithm. For details, we
refer to the corresponding source code that has meanwhile been published by the
Public Software Group e. V.

8With a and b being the semi-major and semi-minor axis of the WGS-84 reference spheroid.
9There is a numerical instability because the tunnel distance is almost constant for all nearly

antipodal points on a sphere. Furthermore, the tunnel distance between two antipodal points
on the spheroid varies and is not always ≤ 2r.

3/15

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

2.1.3 Costs of trigonometric calculations

The algorithm described in subsections 2.1.1 and 2.1.2 requires 12 trigonometric
operations, 5 square root operations, and up to six if-clauses10 (see source code).
For points that are close to one another, some of these operations can be omitted.

Tests have shown that the previously used Taylor-based approach doesn’t
have any significant speed advantages when implementing both functions in
the programming language “C”. The Taylor-based approach still has advan-
tages when trigonometric functions are called in an interpreted language such
as PostgreSQL’s built-in PL/pgSQL language.11 By switching to C, however,
this advantage vanishes if the pre-calculated Taylor coefficients must be read
from a PostgreSQL record-type data structure.12

The speed of the new distance calculation function is approximately the same
as the old Taylor-based formula while the new formula has a higher accuracy and
also works across continents and across the poles.

2.1.4 Comparing the accuracy with the truncated Taylor series

The work report from June 6, 2016 presented exemplary errors when calculating
distances between the following locations on earth:

Location Sym. Latitude Longitude

Berlin (Brandenburg Gate) B 52.5162746 N 13.3777040 E
London (Big Ben) L 51.5007292 N 0.1246254 W
Paris (Eiffel Tower) P 48.8583701 N 2.2944813 W
Rome (Colosseum) R 41.8902102 N 12.4922309 W
Moscow (Red Square, Mausoleum) M 55.7537117 N 37.6198846 E
Longyearbyen (harbour) X 78.2289157 N 15.5994530 W

The Taylor-based approach resulted in the following relative errors:

10Counting the fabs() function as if-clause.
11Due to the overhead of function calls.
12The PostgreSQL source code contains a comment in backend/executor/execQual.c

explaining that the C functions “GetAttributeByName” and “GetAttributeByNum” are slow
due to a “typcache” lookup on each call.

4/15

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

Error in h To B To L To P To R To M To X

From B (Berlin) 0 +1.40 +1.41 +1.96 +4.42 −6.95
From L (London) +1.39 0 +0.15 +0.08 +11.09 −3.97
From P (Paris) +1.29 −0.21 0 +0.09 +10.72 −3.94
From R (Rome) +0.63 −1.23 −0.66 0 +10.58 −3.03
From M (Moscow) +4.48 +11.20 +11.15 +13.26 0 −2.01
From X (Longy.) +1.82 +1.34 +1.55 +2.25 +11.65 0

The new antipodal cross-fading method (as described in subsections 2.1.1 and
2.1.2) results in the following reduced errors:

Error in h13 To B To L To P To R To M To X

From B (Berlin) 0 0.006 0.008 0.022 0.017 0.056
From L (London) 0.006 0 < 0.001 0.005 0.042 0.051
From P (Paris) 0.008 < 0.001 0 0.003 0.050 0.056
From R (Rome) 0.022 0.005 0.003 0 0.084 0.065
From M (Moscow) 0.017 0.042 0.050 0.084 0 0.070
From X (Longy.) 0.056 0.051 0.056 0.065 0.070 0

While there is no formal proof, tests have shown that the maximum error of
the new method is always less than 2h (0.2%) for random points on earth.14

Therefore, the first limitation mentioned in section 1.1 gets lifted when using the
new formula for calculating distances between points on earth.

2.1.5 Reversal symmetry

Also the second limitation mentioned in section 1.1 gets lifted by using the new
formula: as already visible in the last table of the previous subsection 2.1.4, the
error of the new distance function is not only smaller but also symmetric (e.g.
the error when calculating the distance from London to Moscow is the same error
as calculating the distance from Moscow to London). This is an improvement
when comparing the method to the Taylor-based approach, which doesn’t behave
symmetrically (see corresponding tables in the previous subsection).

To ensure that not even floating point errors can yield to different results
when swapping the origin and destination point, our implementation orders the
latitude and longitude values prior to calculation (see source code for details).

13All errors in this table have a positive sign.
14This is less than the maximum error when earth would be completely modeled as a sphere.

5/15

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

2.2 Utilizing PostgreSQL’s Generalized Search Tree (GiST)
framework

While the improvements described in section 2.1 can lift the first and second
limitation mentioned in section 1.1, a mere formula for calculating distances
cannot improve the syntax constraints (third issue) or allow nearest neighbor
searches without the incremental workaround (fourth issue in secion 1.1).

For these reasons, we considered using the GiST interface of PostgreSQL to
provide an integrated solution for geospatial indexing.15

2.2.1 A short introduction to GiST

For the remainder of this section 2.2, we assert that the reader be familiar with
the general strucuture of GiST indices. A short introduction to GiST can be
found at the following URLs:

• http://gist.cs.berkeley.edu/

• http://db.cs.berkeley.edu/papers/vldb95-gist.pdf

• https://www.postgresql.org/docs/9.5/static/gist-intro.html

An implementation of a nearest neighbor search capable GiST index in Post-
greSQL requires the implementation of the following 8 support functions: “con-
sistent”, “union”, “compress”, “decompress”, “penalty”, “picksplit”, “same”,
“distance”.16 The structure of the index differs depending on the particular
implementations chosen for these functions.

After discussing the key structure for keys stored in the index (based on a
space-filling fractal curve) in subsection 2.2.2, a short overview on the partic-
ular implementation of each of the 8 GiST support functions will be given in
subsection 2.2.3.

2.2.2 Using a space-filling curve

While both PostgreSQL and PostGIS use GiST-based R-tree indices for geometric
(and, in case of PostGIS, geographical) data types, an R-tree based implemen-
tation didn’t appear to be the best choice for geospatial indexing.17 Instead, we

15This was already proposed in section 3.3 (“Remaining tasks”) of work report June 6, 2016
as well as footnote 45 on page 16 of the same document.

16https://www.postgresql.org/docs/9.5/static/gist-extensibility.html
17An R-tree usually has overlapping nodes and requires to store bounding boxes for each

node. For these two reasons, additional working memory would be consumed which, in turn,
can be a problem for caching indices on huge datasets in main memory.

6/15

http://gist.cs.berkeley.edu/
http://db.cs.berkeley.edu/papers/vldb95-gist.pdf
https://www.postgresql.org/docs/9.5/static/gist-intro.html
https://www.postgresql.org/docs/9.5/static/gist-extensibility.html

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

used an index based on a space-filling fractal curve. For the fractal, the Lebesgue
curve18 was chosen for reasons of implementational simplicity.

Following the shape of a Lebesgue curve, a single point on earth can be
represented by a bit string where the latitude and longitude bits are interspersed:

ϕ0, λ0, ϕ1, λ1, ϕ2, λ2, ϕ3, . . . , ϕ27, λ27

with

ϕn ∈ {0, 1} , λn ∈ {0, 1}

This representation cosumes 56 bits including the zeroths bits of latitude
and longitude because 2 · (27 + 1) = 56. The worst resolution of the index is
40, 000 km / 228 ≈ 14.9 cm at the equator.19

The leaves of the tree always contain 56 bit-long bit strings (7 bytes). The
internal nodes of the search tree, however, need to cover a range of leaves. For
this reason, truncated bit strings need to be stored in the nodes. This is encoded
by appending a length information (requires 6 bits to store a length from 0 to
56 inclusive) to the key.

In practice, the total key size for single points is rounded up to 8 bytes for
reasons of memory alignment and polymorphic functions (refer to the source
code for details).

Beside storing simple points, the index shall also be capable of handling more
complex objects that cover an area bigger than a singular point (e.g. paths,
polygons, etc). To store such kinds of objects (and to allow index lookups on
those entries), a center point of a bounding circle and its radius is included in the
index keys. The center point can be encoded by interspersing the latitude and
longitude bits as explained above. However, the radius of the bounding circle
(i.e. the information on the size of the indexed object) must also be interspersed
with the bits for latitude and longitude of the center of the bounding circle. The
following scheme can be used:

ρ0, ϕ0, ρ1, λ0, ρ2, ϕ1, ρ3, λ1, ρ4, ϕ2, ρ5, . . . , ρ54, ϕ27, ρ55, λ27, ρ56

As the exact radius of the bounding circle doesn’t need to be stored pre-
cisely,20 we can restrict the choice of all ρn in such way that only one bit can be

18https://en.wikipedia.org/wiki/Z-order_curve
19Note that the resolution of the index is not limiting the resolution of the indexed data

because PostgreSQL can recheck whether a condition is satisfied using the table data rather
than the index data.

20A larger value for the radius can be stored because PostgreSQL can recheck whether a
condition is satisfied when querying the index. See “consistent” support function on page 8
and the associated footnote 24.

7/15

https://en.wikipedia.org/wiki/Z-order_curve

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

set to 1 while all other bits are 0. This allows to perform a logarithmic compres-
sion of ρ by simply storing an index n of that ρn which is 1.21 If n = 57, then
all ρn = 0. Since n ∈ {0, 1, 2, . . . , 57}, appending a single byte to the index key
is sufficient to consider the dimensions of an object referenced in the index tree.
The total key size results in 9 bytes when indexing geographic objects with a size
not always equal to zero (i.e. circles, paths, polygons, etc).

Object type Key size of leaf nodes22 Key size of internal nodes

Points 7 bytes 8 bytes
Boxes 8 bytes 9 bytes
Circles 8 bytes 9 bytes
Paths 8 bytes 9 bytes
Polygons 8 bytes 9 bytes

Using the space-filling fractal as well as the logarithmic compression results
in a maximum key size of 9 bytes, which is considerably smaller than storing the
position and dimension of bounding boxes as done in R-trees.

2.2.3 Implementation of the 8 support functions

The following list gives an overview on the implementation of the necessary GiST
support functions. For details, please refer to the source code.

consistent PostgreSQL allows three return values: “no”23, “maybe”24, or
“yes”25. Because the index key format (as explained in subsection 2.2.2) is
lossy26, only “no” and “maybe” are returned while “yes” is never returned.27

For equality queries, the query datum is simply converted to a key, and then
“maybe” is returned if and only if the key of the query datum is equal to the key
stored in the tree.

21Increasing n by 1 corresponds to reducing the area of the bounding circle by 50%, hence
dividing the radius by

√
2. The special value of n = 0 is used for all bounding circles with a

radius greater than a given reference length (which is in the same order of magnitude as the
radius of earth).

22PostgreSQL does not allow to specify different key sizes for leaf nodes and internal nodes
unless using variable size data types. To reduce computational and implementational overhead,
leaf nodes use the format for internal nodes. Hence the values in this column are not applicable
for the implementation.

23Returning false.
24Returning true with “recheck” set to true.
25Returning true with “recheck” set to false.
26The resolution can be as coarse as 14.9 cm at the equator.
27Note that while it still would be possible to return “yes” in certain cases, the implemen-

tational and computational overhead doesn’t seem to justify the necessary extra calculations.

8/15

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

For testing whether a point is contained in a bounding box, the key stored
in the tree is converted to a bounding box, and then “maybe” is returned when
this bounding box overlaps with the query bounding box.

For all other “overlap” queries,28 a minimal distance between the query object
(e.g. a circle for radial searches) and a bounding box29 for the center point of
the bounding circle of the indexed object is calculated. The maximum size of
the indexed object (which is stored in the key using logarithmic compression)
is substracted from that value. If the value is smaller than or equal to zero,
“maybe” is returned.

In all other cases, “no” is returned.

union Combining two keys is performed by simply truncating the bit strings of
the keys (at the right side) to have the same length and then further truncating
any differing bits from the right side of the strings.

compress The compress function converts geographic objects to the index key
structure as defined in subsection 2.2.2.

decompress The decompress function is not used (and simply returns its argu-
ment) because the index support functions work directly on the stored key data
format.

penalty The penalty function returns the number of truncated bits when creat-
ing a union of an original key with a key to be inserted. This roughly corresponds
to returning the additionally covered area in case of R-trees.

picksplit The picksplit function decides which entries are moved to a new page
when the size of the page grows too big, and which entries are kept. In case
of R-trees, it is possible that entries are both kept and copied to a new page
(overlapping bounding boxes). The fractal curve described in subsection 2.2.2
does not require overlapping index pages though. Instead, a union of all keys in
the page is calculated. Then one bit is appended to the bit string of the union
(this bit is set to 0 or 1). Those keys that are covered by one key (e.g. the union
appended by 0) stay on the old page, and those keys that are covered by the
other key (e.g. the union appended by 1) are moved to the new page. If the bit
string of the union of all keys has already a maximum length (i.e. if no bit can
be appended to the bit string), then a trivial split is performed where half of the
entries are selected arbitrarily to be moved to a new page.

28Operator “&&” in SQL.
29Estimating the possible location of the center point, calculated from the (lossy) index key.

9/15

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

same The “same” support function simply tests two keys for equality. In our
implementation, this check can be performed binary (using memcmp) because
all unused bits are always initialized.

distance The distance function returns a minimal distance between the query
object and the bounding box29 of the center point of the bounding circle of
the indexed object. Then the maximum size of the indexed object (which is
stored using logarithmic compression) is substracted. (This is basically the same
mechanism described for the “consistent” function.)

The result is sanitized in such way that only zero or positive finite values are
returned because PostgreSQL internally uses −∞ and +∞ for other purposes,
such as handling NULL values.30

2.2.4 Handling empty objects

Special considerations have been taken to handle empty objects in the index
(objects which do not contain any point and thus do not overlap with any other
geographic object or even themselves). These could be circles with a negative
radius or a set of polygons that is empty.

In order to process empty objects (which are distrinct from NULL), the “com-
press” function must return a special key (the “empty key”) that is not matching
any location on earth. Furthermore, another special key (the “universal key”)
covering both empty and non-empty geographic objects must be returned by the
“union” function when combining keys of empty and non-empty objects.

The two special keys “empty key” and “universal key” are implemented with-
out additional space consumption by storing a magic value in the byte that is
normally storing the logarithmically compressed object size. For the details of
the implementation, refer to the source code.

2.3 Adding new data types and necessary operators

In addition to providing the previously explained key format and associated GiST
support functions, actual implementations for the desired operators had to be
created. Most importantly, that is:

• the overlap operator (&&),

• the distance operator (<->).

For most other operators such as the “contains” (@>)31 and the “contained in”

30https://www.postgresql.org/docs/9.5/static/gist-extensibility.html

warns about returning ±∞.
31In older PostgreSQL versions: ~ (still used by PostGIS).

10/15

https://www.postgresql.org/docs/9.5/static/gist-extensibility.html

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

(<@)32 operator, the same index strategy as used for the overlap operator (&&) can
be applied.33 Only the operator functions (and necessary geometric operations)
would need to be implemented for adding these operators.

The following data types have been implemented:

• epoint: a point on earth,

• ebox: a latitude/longitude range (e.g. describing a viewport for a map),

• ecircle: a filled circle (used in conjunction with the distance operator for
radial searches with fixed radius),

• ecluster: a collection of points, paths, (filled) polygons, and outlines
(i.e. closed paths / non-filled polygons).

Particularly for polygons, certain geometric algorithms had to be implemented
such as a “point in polygon” algorithm based on ray tracing34 or geometric pro-
jections to determine the shortest distance between two polygons or a point
and a polygon. As a result, the distance operator <-> works with high preci-
sion and does not use bounding boxes for an approximation of the distance to
clusters/polygons. (Note: PostGIS, in contrast, uses inaccurate bounding boxes
here.)

Currently not all combinations of operators and/or data types are imple-
mented. This is ongoing work; for details refer to the published reference docu-
mentation.

2.4 Treatment of the poles and the 180th meridian

The distance calculation algorithm as explained in section 2.1 works properly both
at the poles and the 180th meridian. The new algorithm automatically considers
shortest paths crossing the north or south pole when calculating distances (e.g.
between Iceland and Alaska). No special handling is required here.

The fractal index as explained in section 2.2 has a slight drop of performance
near the poles because of the singularity in the coordinate system (at the poles
all possible longitudes from −180 to +180 degrees are covered). The accuracy,
however, is not affected by the index.

Whenever clusters are used (which may contain paths, polygons, or outlines
of polygons), there is a drop in accuracy next to the poles that depends on

32In older PostgreSQL versions: @ (still used by PostGIS).
33If an object is contained in another object, those two objects always overlap.
34https://en.wikipedia.org/wiki/Point_in_polygon

11/15

https://en.wikipedia.org/wiki/Point_in_polygon

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

the maximum distance between the vertices of the polygon. This is because
projections are performed in Euclidean space.

In order to avoid ambiguities in regard to eastern/western orientation of edges
of paths, polygons, or outlines of polygons, each entry in a cluster may only cover
a longitude range of less than 180 degrees. Areas that cover a wider longitude
range are still possible by splitting them into multiple polygons.

3 Comparison with PostGIS

As PostGIS is only available under the terms of a viral license that is incompatible
with certain other open source licenses,35 using PostGIS is not an option for the
LiquidFeedback project.36 However, we will compare our created solution with
PostGIS for informational reasons.

3.1 Constraints in PostGIS when treating the earth as a
spheroid

PostGIS does not support global coordinates for a wide range of functions. To
name a few examples:

• The ST Overlaps function is not defined for the geographic data type.

• The <-> operator returns true distances only between values of the geom-
etry data type (which doesn’t work globally) but uses “sphere distance”
for the geography data type (which can describe global coordinates).

• The && operator uses bounding boxes for determining whether two ob-
jects overlap (i.e. the operator may return true even if two objects do not
overlap). This is an even bigger error than just modeling earth as a sphere.

Our created extension, in contrast, always uses spheroid coordinates for all
operations.37 Distances are measured in such way that all local operations honor
the flattening of earth, even if the data type and/or table column stores global
coordinates. Only for long-range distances, the error can grow up to 0.2%, which
is still better than modeling earth as a sphere.

35Refer to page 9 of work report June 6, 2016.
36LiquidFeedback aims to provide users and developers maximum freedom and accessibility to

the source code also when combining it with any other software components. The GNU General
Public License is contrary to these goals. See also: http://www.public-software-group.
org/licenses

37The only exception is when internally performing projections on a polygon, path, or outline
in order to determine the shortest distance to a cluster (see section 2.4). The error, however,
approaches zero in most practical cases.

12/15

http://www.public-software-group.org/licenses
http://www.public-software-group.org/licenses

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

3.2 OpenGIS “Simple Features Specification for SQL”

PostGIS provides many functions such as ST Distance, ST MakePoint, etc. as
defined in standards by the OpenGIS consortium as well as ISO 19125. Imple-
menting these functions as well as data storage formats that follow the OpenGIS
geometry class hierarchy is possible but a matter of time and resources (see also
following section 4.2 on compatibility considerations regarding additional data
storage formats). It should be noted that PostGIS does not properly implement
many of the functions when using spheroid coordinates that work across sev-
eral continents, i.e. globally. This has already been elaborated in the previous
subsection 3.1.

4 Compatibility considerations

4.1 Standard compliance

GIS standards may be followed on the SQL level or on the level of data repre-
sentation when querying a database through REST API calls.

As already mentioned in section 3.2, extending our geospatial extension for
PostgreSQL to include functions such as ST Distance, ST MakePoint, and as-
sociated data types on the SQL level is possible but a matter of time and resources
(and budget).

Beside these economic concerns, it is currently not planned in the WeGovNow
consortium to provide any form of SQL interface to third party components.
Instead, a REST based API has been proposed (and is already implemented by
GeoKey, for example). Therefore, compatibility must be ensured on the level
of data representation when querying WeGovNow software components through
REST API calls.

As we will see in the following section 4.2 on additional data storage formats,
PostgreSQL enables a programmer to include any desirable data format with
little overhead. Therefore, it is easily possible to make a REST API interface
standard compliant with any kind of geospatial data exchange format including
those which follow the OpenGIS geometry class hierarchy or any other scheme
like GeoJSON (which is used by UCL’s GeoKey).

4.2 Additional data storage formats

It is desirable to also support more complex geographic data formats such as
GeoJSON or XML based documents, which may contain meta data. Whenever

13/15

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

needed, these formats can be stored directly in a corresponding JSONB, XML38,
or even TEXT table column.39 All spatial indexing functions and operators as
presented in section 2 of this paper, may still be used for these data formats even
if the data types do not support lossless round-trip conversions. This is possible
because PostgreSQL supports indexes on expressions (see chapter 11.7 of the
PostgreSQL 9.5 manual40). An application simply needs to provide a one-way
mapping function from the stored geographic data type to one of the data types
supported by the index.

4.3 Using a different spheroid

Also other reference spheroids than WGS-84 are thinkable by adjusting the corre-
sponding constants in the C code. However, as the WeGovNow project depends
on a compatible standard for coordinates anyway, it would be advisable to use
WGS-84 as a common standard.

5 Publication of results

The developed software has been submitted to the Public Software Group e. V on
August 18, 2016 and was published by the Public Software Group in the source
code repository of LiquidFeedback Core41 under the terms of the MIT-License42

on August 18, 2016.

The source code has been modularized so that it is easy for other consortium
partners to incorporate it, if desired. All previous work on LiquidFeedback in
regard to spatial data was adjusted in order to use the new geospatial indexing
module.

38Support for the XML data type requires PostgreSQL to be compiled with the
“--with-libxml” configuration option.

39Such data types may be extended by adding validity checks using so-called “domains”.
See PostgreSQL’s documentation on the CREATE DOMAIN command: https://www.

postgresql.org/docs/9.5/static/sql-createdomain.html.
40https://www.postgresql.org/docs/9.5/static/indexes-expressional.html
41http://www.public-software-group.org/mercurial/liquid_feedback_core/

rev/96ee2db56bec
42http://www.public-software-group.org/mercurial/liquid_feedback_core/

file/96ee2db56bec/LICENSE

14/15

https://www.postgresql.org/docs/9.5/static/sql-createdomain.html
https://www.postgresql.org/docs/9.5/static/sql-createdomain.html
https://www.postgresql.org/docs/9.5/static/indexes-expressional.html
http://www.public-software-group.org/mercurial/liquid_feedback_core/rev/96ee2db56bec
http://www.public-software-group.org/mercurial/liquid_feedback_core/rev/96ee2db56bec
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/96ee2db56bec/LICENSE
http://www.public-software-group.org/mercurial/liquid_feedback_core/file/96ee2db56bec/LICENSE

Work Report on “pgLatLon” LiquidFeedback / FlexiGuided GmbH

6 Conclusion & Outlook

It has been shown that PostGIS’ spatial indexing functions can be replaced by
a more lightweight approach within reasonable time. Previous limitations (see
section 1.1) could be lifted. A usable implementation has been published as open
source software under a permissive (non-viral) license.

While certain data representation formats are not yet supported by the new
extension, these could easily be integrated with the current implementation (refer
to section 4 for that matter).43

© 2016 FlexiGuided GmbH, Berlin

43Note, however, that other data structures (such as bézier curves etc.) would require further
data type implementations.

15/15

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

	

Annex 6
Extending WeGovNow platform

Extending	WeGovNow	platform	
		
	Requirements	and	features	to	finalise	WeGovNow	platform	in	supporting	service	scenarios	

		
		
		
		
		
WP3	Technical	report	
Authors:	Alessio	Antonini,	Lucia	Lupi	–	University	of	Turin	
Version:	1.1	
Date:	03/07/2017	
		
	
	

History	
Version	 Date	 Reason	 Revised	by	

1.0	 22.06.2017	 First	document	version	 Alessio	Antonini	
	 26.06.2017	 Workflows	 Lucia	Lupi,	Alessio	Antonini	
	 27.07.2017	 Exhibit	2	and	3	 Alessio	Antonini	

1.1	 03.08.2017	 Captions,	revision	of	section	1	
and	section	3		 Alessio	Antonini	

	 08.08.2017	 Revision	of	section	1	 Alessio	Antonini,	Lucia	Lupi	
	
		
		
		

Summary	
The	following	report	is	an	assessment	and	analysis	of	service	scenarios,	use	cases	and	preliminary	
requirements	 collected	 within	 the	 scope	 of	 the	 project,	 consolidated	 by	 joint	 work	 with	 local	
municipalities	and	technical	teams.	The	key	point	of	the	analysis	is	to	highlight	the	processes	behind	
the	 scenarios,	 which	 interconnects	 the	 “day	 in	 a	 life”	 use	 cases	 to	 a	 process	 of	 progressive	
integration	 of	 the	 platform	 in	 the	 city	 life	 synthetized	 in	 four	 types	 of	 general	 workflows.		
Furthermore,	the	report	presents	the	main	requirements	for	the	adoption	of	the	platform	by	the	
local	stakeholders	and	municipalities,	completed	by	a	brief	assessment	of	the	technical	feasibility	
within	 the	 technological	 framework	 of	 the	 project.	 Finally,	 considering	 the	 key	 action	 points	 of	
workflows,	 it	 is	 presented	 a	 possible	 implementation	 to	 support	 scenarios	 using	 in	 the	 current	
WeGovNow	platform.	
	 	

	

Table	of	Contents	

Summary	 1	

1	 Introduction	 3	
1.1	 Addressing	the	service	scenarios	 4	
1.2	 Evaluating	requirements	 5	

2	 Adoption	of	WeGovNow	platform	 9	
2.1	 Interoperability	with	existing	tools	 9	
2.2	 Connecting	with	existing	authentication	services	 10	
2.3	 Unified	access	to	user	guides	 10	
2.4	 Single	helpdesk	 10	
2.5	 Organisation	account	 10	
2.6	 Custom	monitoring	of	entities	 11	
2.7	 Importing	data	 11	
2.8	 Exporting	data	 11	

3	 Requested	features	and	integrations	 12	
3.1	 Co-design	for	public	administration-driven	projects	 12	

Phase	1:	Call	for	participation	 13	
Phase	2:	Co-design	activities	(online	and	offline)	 13	
Phase	3:	Discussion	and	selection	of	proposals	 14	
Phase	4	Call	for	contributions	&	call	for	tender	 14	
Phase	5.	Follow	up	about	the	project	 15	

3.2	 Co-management	of	public	spaces,	commons	and	shared	resources	 15	
Phase	1:	mapping	of	public	spaces/buildings	+	urban	commons	 16	
Phase	2:	Groups	formation,	development	of	civic	proposals,	and	selection	of	proposals	 16	
Phase	3:	co-management	of	spaces,	monitoring	and	reporting.	 17	

3.3	 Coordination	of	private	initiatives	facilitated	by	the	Public	administration	 17	
Phase	1:	Collaborative	building	of	the	business/managing	model	 18	
Phase	2:	Local	network	activation	(Food	system	for	san	Donà)	 18	
Phase	3:	Inter-organizational	coordination	in	using	the	common	space	 18	
Phase	4:	Network	consolidation	and	growing	 18	
Phase	5:	periodical	call	for	ideas/projects	 19	

3.4	 Co-production	of	services	between	public	and	private	sector	 19	
Phase	1:	Mapping	of	public	offices/facilities	and	sharing	of	public	information	about	one	or	more	
sectors	of	city	services	 20	
Phase	2:	Collaborative	monitoring	and	data	integration	(institutional	and	crowdsourced)	 20	
Phase	3:	Aggregation	of	information	about	local	activities,	initiatives	and	projects	independently	
implemented	by	local	stakeholders	 21	
Phase	4:	Participatory	process	to	define	new	targets	and	services	 21	
Phase	5:	Co-production	of	services	between	public	and	private	sector	 22	

Conclusions	 23	
	
	
	
	 	

1 Introduction	
WeGovNow	platform	should	be	considered	primarily	a	digital	environment	for	civic	technologies,	
oriented	to	the	we-government	of	urban	resources	such	as	commons,	policies,	projects	among	local	
stakeholders	and	citizens.	The	development	of	WeGovNow	platform	can	be	summarised	as	follows:	
	

a) the	development	of	the	environment	services,	providing	the	basic	functionalities	to	enable	
the	orchestration	among	peer	components		

b) the	development	of	new	components,	modules	and	 features	 to	be	 integrated	 in	one	or	
more	components	

c) the	 development	 of	 integrations	 between	 components	 supporting	 the	 applicative	
workflows.		

	
The	platform	development	 is	 organised	 accordingly	with	 three	milestones	 corresponding	 to	 the	
completion	of	each	step.	
	
1st	prototype	(released	in	May	2017)	enables	users	to	switch	between	components	and	to	use	their	
functionalities	with	the	same	account.	Users	can	login	using	a	common	navigation	bar	and	switch	
between	components	keeping	their	session.	
	
2nd	 prototype	 (released	 in	 July	 2017)	 will	 include	 the	 new	 component	 Trusted	 Marketplace,	
OntoMap	 logger	 and	 LandingPage.	 Users	 will	 be	 enabled	 to	 explore	 their	 activities	 within	 the	
WeGovNow	platform	from	the	TrustedMarketplace	and	the	LandingPage,	thanks	to	the	integration	
of	all	components	with	the	OntoMap	logger.	
	
Final	 prototype	 (expected	 for	 the	 end	 of	 October	 2017)	 will	 provide	 integrations	 between	
components	 in	 terms	 of	 content	 and	 features	 deep	 linking.	 The	 integrations	will	 be	 specifically	
designed	 to	 support	 the	 “Service	 Scenarios”	 provided	 by	 the	 Municipalities	 of	 the	 trial	 sites,	
developed	in	workshops	involving	local	stakeholders.	
	
The	 development	 of	 WeGovNow	 platform	 as	 described	 is	 supported	 by	 engagement	 activities	
hosted	in	the	three	trial	sites	of	the	project,	and	by	rounds	of	expert	testing.	The	outcome	of	first	
year	and	half	of	engagement	activities,	where	reported	as	“Service	Scenarios”	providing	inputs	for	
the	 development	 of	 the	 new	 components	 and	 new	 features,	 and	 other	 accessory	 solutions	 to	
support	the	use	of	the	platform,	accordingly	to	the	vision	of	local	stakeholders.	The	expert	testing	
produced	specific	reports	for	each	component,	with	the	aim	of	improving	their	accessibility	aspects.	
	
Between	the	2nd	and	final	prototypes	and	between	the	final	prototype	and	the	first	release	of	the	
platform,	expert	testing	will	be	focused	on	both	accessibility	and	usability	of	new	components	and	
of	the	integrated	platform.	Following,	the	use	by	end	users	will	provide	further	input	to	polish	the	
integration	and	enhance	the	overall	usability	of	the	platform	with	the	goal	of	increasing	the	success	
rate	of	adoption	in	the	local	contexts	of	trial	sites.		
	
	

Exhibit	1.	Current	development	status	and	aims.	

		
	
	
Currently,	the	platform	development	activities	are	focused	on	the	development	of	new	components	
and	on	the	finalisation	of	the	platform	environment	(between	the	1st	and	2nd	prototypes),	see	Exhibit	
1.	In	this	point	in	time,	the	development	activities	are	focused	on	delivering	new	components	and	
features,	 and	 on	 incorporating	 the	 relevant	 inputs	 as	 features	 of	 the	 new	 components	 (under	
development)	and	as	integrations	to	be	developed	within	the	final	prototype.		

1.1 ADDRESSING	THE	SERVICE	SCENARIOS	
Service	scenarios	are	collections	of	general	needs,	preliminary	requirements,	daily-based	use	cases,	
and	intuition	about	how	municipalities	envisage	the	use	of	the	platform	in	providing	services	to	and	
with	the	citizens,	summarised	in	deliverable	D2.3,	Annex	II.	The	collected	inputs	had	been	assessed	
by	 technical	 teams,	 under	 the	 light	 of	 the	 scope	 of	 the	 project,	 of	 the	 availability	 of	 time	 and	
resources,	 of	 the	 existing	 components	 and	 their	workflows,	 resulting	 in	 a	 list	 of	 indications	 for	
further	development	of	WeGovNow	platform.	
The	process	of	assessing	service	scenarios	and	specification	of	requirements	has	been	developed	as	
follows:	

1. extend	service	scenarios	from	a	specific	application	example	to	a	general	pattern	of	use	
2. mapping	the	fragmented	daily	use	cases	in	steps	of	full	service	processes,	involving	multiple	

actors	in	wide-range	of	time	
3. collecting	the	missing	 information	about	the	context	and	work	procedures,	 important	for	

the	adoption	of	the	platform	
4. extracting	the	underlying	workflows	from	the	service	patterns	
5. clustering	similar	workflows	in	common	we-government	processes		
6. mapping	 workflows’	 steps	 with	 components,	 to	 highlight	 missing	 features	 and	 required	

extensions	
7. validation	of	workflows	and	corresponding	platform	 functionalities	with	a	 subset	of	 local	

municipalities	(up	to	now	with	Turin	and	San	Donà	di	Piave)	

The	assessment	process	required	to	build	a	deeper	understanding	of	applicative	context	in	terms	of	
workflows,	 scope	 of	 activities,	 goals,	 key	 steps,	 which	 brought	 the	 analysis	 presented	 in	 the	
following	Section	3.	The	collected	service	scenarios	are	used	as	staring	point	for	further	discussion	
between	 development	 teams	 and	 the	 municipalities	 (as	 representatives	 of	 local	 stakeholders	
involved	in	the	platform	design).	The	direct	communication	between	stakeholders	and	development	
teams	is	resulting	effective	in	terms	of	consolidating	the	applicative	scenarios,	and	defining	the	next	
development	tasks.	

1st	prototype	 2nd		prototype	

- New	 components	 and	
features	

- Platform	integration	
- Debugging	integration	

- 1st	round	of	testing	
- Cross-component	

Integrations	
- Integration	 of	 new	

features	

- 2st	round	of	testing	
- Platform	debugging	
- Finalisation	

Final	prototype	

1.2 EVALUATING	REQUIREMENTS	
Service	scenarios	are	partial	in	terms	of	both	understanding	of	WeGovNow	functionalities	and	in	
terms	of	description	of	services.	Consequently,	use	cases	and	requirements	presented	within	service	
scenarios	have	to	be	considered	as	general	indications	of	how	the	platform	should	behave,	and	how	
the	platform	will	be	adopted.	Considering	those	limitations,	requirements	were	analysed	using	the	
following	criterion:	
	

a) the	underlying	workflows,	extending	the	scenarios	to	cover	the	full	life-cycle	of	the	service	
to	expose	hidden	requirements,	to	prioritise	the	tasks	and	to	find	common	solutions	among	
different	scenarios	and	trial	sites	

b) alternative	 implementations	 of	 use	 cases,	 exploiting	 the	 existing	 mechanisms	 of	 the	
consolidated	components	of	WeGovNow	

c) the	scope	of	WeGovNow,	what	falls	in	the	field	of	we-government	and	help	in	defining	what	
is	out	of	scope	for	the	platform	development	

d) existing	 tools	 used	 by	 or	 available	 to	 stakeholders	 and	 to	 end	 users	 for	 ancillary	 or	
complementary	activities.		

	
The	analysis	highlighted	the	following	classes	of	requirements:	
	

1) External	requirements,	expectations	regarding	the	dissemination	and	communication	of	the	
platform	toward	end	users	to	involve	them	in	the	platform	

2) Unspecific	non-functional	requirements,	about	general	expectation	toward	the	platform	as	
technological	tool		

3) Specific	non-functional	requirements,	about	overall	setup	of	the	platform	and	the	internal	
coherence	of	components		

4) Specific	functional	requirements,	based	on	a	specific	implementation	of	scenarios.		
	
External	requirements	(1),	such	as	the	platform	must	be	promoted	and	used	by	a	large	public	or	the	
municipal	staff	should	be	trained	in	using	the	platform,	cannot	be	addressed	within	the	scope	of	
developing	 the	 platform.	 Unspecific	 non-functional	 requirements	 (2),	 such	 as	 usability,	
accountability,	safety	or	transparency	of	data,	cover	basic	principles	which	are	best	practices	and	
constraints	already	addressed.	Both	types	could	be	considered	as	indications	for	the	communication	
of	 the	 platform:	what	 users	may	 be	 concerned	of,	 strong	 points	 of	 a	 high	 quality	 technological	
platform,	etc.	
Specific	 non-function	 requirements	 (3)	 are	 important	 to	 support	 the	 daily	 use	 of	 the	 platform,	
improving	 the	 overall	 perception	 of	 the	 platform	 as	 “one”	 and	 the	 consistent	 use	 of	 different	
features.	This	class	of	requirements	should	be	addressed	in	late	stage,	to	finalise	WeGovNow,	by	
working	 on	 improving	 the	 visual	 coherence	 of	 components	 in	 terms	 of	 colours,	 position	 and	
recognisability	of	recurrent	elements,	type	of	interaction	for	similar	features,	etc.		
Specific	 functional	 requirements	 (4)	 are	 what	 should	 be	 addressed	 in	 the	 current	 stage	 of	
development:	 inputs	 for	 the	 new	 components	 (2nd	 prototype)	 and	 input	 for	 integrations	 (final	
prototype).	A	relevant	set	of	specific	functional	requirements	are	cross	scenario	and	are	aimed	to	
support	the	adoption	of	the	platform	in	their	work	environment,	within	the	current	standards	for	
software	 tools	 that	 trial	 sites	 are	 already	 using.	 Following	 the	 existence	 of	 a	 set	 of	 adoption	
requirements,	we	explored	the	issues	regarding	the	adoption	of	WeGovNow	and	extracted	a	small	
set	of	specific	requirements	presented	in	section	2.		
	
As	mentioned,	specific	functional	requirements	of	components	had	been	evaluated	considering:	

	
i) Schema	of	general	workflows	and	scope	of	components	involved	phase	by	phase	in	the	

service	scenario,	implemented	by	the	consolidated	technologies	
ii) Possible	alternatives	to	use	cases,	based	on	existing	mechanisms	
iii) Use	of	existing	collateral	tools	available	
iv) Cost/benefit	 assessment	 in	 terms	 of	 strict	 relation	 of	 the	 requirement	 with	 the	

implementation	of	the	scenario	
v) Number	of	occurrences	of	requirements	in	scenarios	and	steps	of	workflows	
vi) Number	of	expected	end	users	and	stakeholders	interested	to	a	specific	feature	
vii) Technical	feasibility	within	the	project	technological	framework	

	
The	outcome	of	 the	analysis	of	 service	scenarios	and	 requirements	 is	 to	 focus	 the	development	
effort	 on	 supporting	 the	 adoption	 of	 the	 platform	 and	 on	 supporting	 its	 use	 by	 end-users.	
Considering	Exhibit	2,	the	development	of	WeGovNow	platform	will	focus	on	addressing:	
	

• Functional	requirements	specific	to	a	component	or	to	the	platform	as	whole	
• Non-functional	requirements	related	to	the	platform	in	general	

	
Furthermore,	each	single	development	teams	will	address	the	non-functional	requirements	related	
to	their	components	if	possible,	along	with	the	development	of	new	features	and	integrations	with	
other	components.	
	
Exhibit	2.	Grid	of	covered	requirements	considering	their	classification	of	functional/non-functional	in	relation	to	their	scope:	specific	
to	the	platform,	specific	to	a	component	or	unspecific.	In	green	the	focus	of	the	development	activities,	in	blue	the	requirements	that	
will	be	addressed	if	possible	case	by	case,	in	red	the	class	of	requirement	which	will	be	not	addressed.	

	 Specific	to	the	
platform	

Specific	to	a	
component	 Unspecific	

Functional	
• Export	data	
• Notifications	

Organisations	

• Import	data	
• Rules	of	public	calls	
• Search	for	requests	

• Usable	
• Reliable	
• Intuitive	

Non-functional	
• Documentation	
• Standards	
• Support	users	

• Usability	
• Accessibility	
• Look	and	feel	

• Communication	
• Advertisement	
• Training	

	
	
	
Considering	the	generalisation	of	service	scenarios	and	the	output	of	the	requirement	elicitation	
process,	 it	 is	possible	 to	outline	“specific	 roles”	 for	each	component,	within	 the	 foreseen	use	of	
WeGovNow	platform	in	the	service	scenarios.	If	the	requirements	about	the	platform	in	general	will	
support	 the	 platform	 adoption,	 the	 functional	 requirements	 specific	 to	 components	 could	 be	
interpret	oriented	to	support	their	“roles”	in	the	workflow,	integrating	features	and	creating	paths	
between	components.	The	roles	of	each	component	could	be	described	as	follows	(see	Exhibit	3,	
actions):	

	
• GeoKey/CommunityMap	

o Surveys	(collecting,	and	presenting	summary	information)	
§ Present	survey	results	(importing	surveys)	
§ Making	surveys	(importing	setup,	exporting	results)	

o Project	plans	
§ Including	a	plan	
§ Alternative	plans	(plans	related	to	the	same	call)	

• FirstLife	
o Group	localisation	
o Documentation	of	activities	
o Events	and	Calendars	
o Dissemination	of	initiatives	/	news	
o Exploring	data	(location	and	time)	
o Crown	mapping	
o Monitoring	and	coordination	

• ImproveMyCity	
o Reporting	issues	related	to	projects	
o Monitoring	implementation	of	projects	
o Communication	with	local	authorities	

• LiquidFeedback	
o Proposals	formation		
o Contributing	to	projects	and	proposals	
o Decision	making	
o Submitting	proposals	to	public	calls	

• Trusted	Marketplace	
o Search	for	topics	and	collaborations	
o Active	dissemination	of	initiatives,	calls,	etc.	(recommendation)	
o Exporting	/	monitoring	activities	

	
	
In	our	opinion,	the	next	tasks	 leading	to	the	final	prototypes	should	be	aimed	specifically	to	the	
extension	of	existing	components,	to	support	their	roles	and	to	support	the	adoption	of	the	platform	
in	general	(see	Exhibit	3,	new	features	and	integrations):	
	

• GeoKey	
o Importing	plans	
o Importing	surveys	

• FirstLife/OntoMap	
o Exporting	data	
o Exploring	data	
o Area	calendar	

• ImproveMyCity	
o Zone	to	units	
o Boundaries	
o Public	/	private	management	
o Private	reports	

• LiquidFeedback	

o Support	to	public	calls	(description)	
• TrustedMarketplace/OntoMap	

o Exporting	data	
o Search	
o Recommendation	

	
	
Exhibit	3.	Table	summary	of	the	actions,	integrations	and	new	features	for	each	component,	involved	in	the	workflows.	

	 CM/GK	 FL/OTM	 IMC	 LF	 TM/OTM	

Actions	

-	surveys	
-group	
map	
-group	
plans	
-sharing	
plans	

-	local	groups	
-	events	
-crowd	
mapping	
-	monitoring	
-	dissemination	

-	reporting	
-	
accountability	

-	proposals	
-	
contributin
g	
-	decision	
-	rules	

-	collaborations	
-	monitoring	
-	dissemination	
-	group	making	

New	
Features	

-	
importing	
plans	
-	
Importing	
surveys	

-exporting	data	
-exploring	data	
-area	calendar	

-	zone	to	units	
-	boundaries	
-public	 /	
private	
management	
-	 private	
reports	

-call	
description	

-	exporting	data	
-	search	
-	
recommendation	

Integrations	 -to	
initiative	

-	all	initiatives	
-	all	plans	
-	all	activities	

-	from	map	

-group	
plans	
-	from	map	
-from	
calendar	

-	notifications	
-	initiatives	
-	groups	
-	initiatives	

	
	 	

2 Adoption	of	WeGovNow	platform	
The	features	and	requirements	in	common	among	trial	sites	and	service	scenarios	deserve	particular	
consideration	 in	terms	of	cost/benefit	evaluation	of	the	development	effort.	Moreover,	 features	
and	requirements	about	 the	adoption	of	WeGovNow	platform	are	critical	 for	 the	success	of	 the	
project	itself.	Therefore,	our	assessment	is	to	prioritise	adoption	requirements	without	reservation,	
considering	the	project	scope	and	time/resource	frame.	
	
The	adoption	of	the	platform	results	to	be	related	to:	
		

a) Interoperability	 with	 existing	 tools:	 the	 possibility	 to	 interconnect	WeGovNow	 platform	
with	existing	software	through	the	adoption	of	standards.		

b) Connecting	with	existing	authentication	services	used	by	other	local	services.	
c) Unify	the	mechanisms	to	access	to	guides	and	FAQs	of	each	specific	component	
d) Single	helpdesk	for	WeGovNow	platform	
e) Organisation	 accounts,	 users	 from	 an	 organisation	 should	 sign	 their	 contents	 as	 their	

organisation	sector	(e.g.	Dept.	of	social	services	of	the	municipality	of…)	
f) Custom	monitoring	of	entities,	the	possibility	to	set	up	notification	preferences	at	entity	

level	to	receive	emails	about	the	updates.	
g) Import	project	data,	from	csv	loading	both	metadata	and	records	
h) Exporting	datasets,	a	 form	where	to	specify	 time	 interval,	 location,	 topics	 to	export	data	

platform	wise,	with	additional	setups	regarding	the	inclusion	of	comments	or	other	related	
contents.	

	
In	our	opinion,	supporting	those	requests	can	be	archived	within	the	platform	framework	and	scope,	
nevertheless	 we	 should	 be	 prioritised	 by	 considering	 also	 specific	 functional	 requirements,	 in	
particular	the	minimal	set	of	requirements	to	enable	the	implementation	of	service	scenarios.			

2.1 INTEROPERABIL ITY 	WITH	EXISTING	TOOLS	
Interoperability	with	existing	tool	is	interconnected	with	task	3.7	“Interlinking	with	existing	systems	
at	 trial	 sites	 and	 technical	 support”.	 The	 approach	 adopted	 in	 WeGovNow	 documented	 in	
“Consolidated	WeGovNow	system	architecture”,	deliverable	D3.3,	addresses	this	requirement	by	
the	adoption	of	standards:	
		

1. REST	APIs	
2. GeoJSON	format		
3. RDF	triplestore	

		
If	the	adopted	solutions	are	sufficient	to	address	this	requirement,	should	be	verified	by	assessing	
a	 possible	 integration	with	 a	 small	 set	 of	 existing	 services.	 This	will	 be	 done	by	UniTo	with	 the	
support	from	the	trial	sites	for	the	identification	of	candidate	services,	and	by	all	technical	partners	
for	the	assessment.		
	
In	our	opinion,	this	requirement	should	be	resolved	by	demonstrating	that	integration	is	possible	
and	relatively	cheap	in	terms	of	development,	and	by	addressing	other	following	requirements	such	
as	integration	with	authentication	systems,	data	import,	data	export,	without	requiring	any	other	
specific	development.	

2.2 CONNECTING	WITH	EXISTING	AUTHENTICATION	SERVICES	
Currently,	WeGovNow	has	its	own	native	authentication	server	(UWUM)	and	enables	the	use	of	two	
more	from	social	media	platforms	(Google+	and	Facebook).	On	the	other	hand,	municipalities	and	
big	 organisations	 have	 already	 their	 own	 authentication	 systems,	 for	 end	 users	 and	 for	 their	
employees.	The	requirement	is	to	connect	WeGovNow	with	local	authentication	systems,	in	order	
to	enable	end	users	to	use	the	same	“official”	account	they	use	for	all	other	local	services.	
		
This	requirement	 is	a	derivation	of	the	system	interoperability	and	therefore	related	to	task	3.7.	
UniTo	will	enquiry	the	trial	sites	in	order	to	assess	what	are	the	local	authentication	providers	used	
in	public	services,	what	technology	they	use	and	if	and	how	we	could	archive	an	integration.		
		
We	began	by	assessing	the	case	the	municipality	of	Turin,	they	have	a	system	called	“FaciliTo”,	which	
is	 part	 of	 “Sistema	Piemonte”:	 	 a	 Shibolet	 2.0	 authentication	 service.	 In	 the	 beginning	 of	 2018,	
FaciliTo	will	 close	 to	new	registrations	but	currently,	 it	 counts	more	 than	100.000	users	 (40.000	
active	 in	the	 last	year).	From	the	beginning	of	the	next	year	FaciliTo	will	be	sided	with	SPID	(the	
Italian	ID),	which	can	require	the	ID	verification	by	a	public	officer	of	the	user.		
		
SPID	 is	based	on	OAuth	2.0,	but	the	technical	documentation	 is	 in	 Italian	only.	We	are	currently	
trying	a	direct	integration	of	SPID	with	FirstLife	authentication	server.	If	successful,	we	will	support	
the	integration	of	SPID	within	UWUM.	Moreover,	SPID	could	be	applied	in	San	Donà	di	Piave	too.	

2.3 UNIFIED	ACCESS	TO	USER	GUIDES	
Each	component	has	its	own	documentation	and	method	to	provide	it:	in	line,	as	pdf,	in	a	web	site,	
etc.	This	requirement	is	not	about	building	a	unified	documentation,	but	to	provide	documentation	
in	a	unified	and	reliable	way	to	end	users:	a	common	mechanism	to	access	to	the	documentation,	a	
method	which	does	not	change	regardless	the	component.		
		
A	possible	approach	is	to	extend	the	component	configuration	with	a	link	to	a	support	web	resource	
(it	could	be	the	pdf,	a	web	site,	etc.)	The	introduction	of	this	reference	could	be	used	to	extend	the	
navigation	 bar,	 to	 introduce	 a	 contextual	 help	 button	 in	 the	 right	 corner	 to	 show	 the	 support	
resources	of	the	current	component.	

2.4 SINGLE	HELPDESK	
A	WeGovNow	instance	should	have	one	single	helpdesk	 for	all	components.	This	 requirement	 is	
supported	by	the	best	practices	and	guidelines,	the	platform	helpdesk	has	to	provide	a	single	first	
level	which	will	report	the	technical	issues	to	single	technical	teams	if	the	issue	if	needed.		
	
This	 requirement	 is	also	 included	 in	 task	3.7	“Interlinking	with	existing	systems	at	 trial	 sites	and	
technical	support”.		

2.5 ORGANISATION	ACCOUNT	
This	requirement	comes	by	municipalities	but	it	could	be	extended	to	formal	organisations,	it	comes	
from	 the	 consolidated	 custom	 of	 publishing	 contents	 “under	 the	 umbrella”	 of	 an	 institutional	
account	in	structured	organisations.	It	is	critical	for	formal	organisations	to	1)	give	a	proper	frame	
to	 their	 employee	 contents,	 and	 to	 2)	 control	 the	 information	 flow.	 From	 the	 perspective	 of	
employees,	 it	 is	 critical	 to	3)	be	protected	“under	 the	veil”	of	 the	 institutions	avoiding	personal	

responsibility.	The	expected	outcome	is	to	have	contents	posted	by	organisations,	supporting	the	
internal	structure	of	the	organisation	and	the	traceability	of	contents	within	the	organisation	(no	
shared	accounts).	
Currently	 structures	 among	 WeGovNow	 components,	 there	 are	 multiple	 approaches	 to	
organisation	that	could	be	use.	In	our	opinion,	we	should	identify	the	most	suitable	one	and	design	
a	solution	based	on	the	native	mechanism	of	one	of	the	consolidated	components.	The	most	suited	
one	is	LiquidFeedback	since	it	provides	authentication	functionalities,	but	also	Trusted	Martketplace	
could	provide	this	feature	as	part	of	the	user	setup.	

2.6 CUSTOM	MONITORING	OF	ENTIT IES	
From	 the	 perspective	 of	 the	 local	 authority,	 it	 is	 very	 important	 to	 manage	 key	 steps	 or	 key	
information	such	as	a	public	call.	An	effective	management	requires	to:	1)	monitor	the	evolution	of	
specific	contents	such	as	a	project	proposal,	2)	keep	the	quality	of	notification	low	in	number	and	
focused	 the	 enable	 an	 effective	 use	 of	 the	 platform	 by	 municipality	 staff.	 Summarising,	 the	
notification	system	should	support	both	digests	about	locations	or	themes	and	punctual	updates	
related	to	specific	entities.	
Each	component	includes	its	own	notification	system,	but	Trusted	Martketplace	in	particular	could	
support	 end	 users	 in	 managing	 the	 overall	 notification	 setup	 exploiting	 UWUM	 user’s	 profile	
settings.	To	support	notifications	at	entity	 level	we	could	plug	a	notification	system	to	OntoMap	
logger:	as	long	components	send	users’	activities	to	logger	with	explicit	reference	to	entities	it	 is	
possible	to	build	cross-component	fine	grain	notifications,	assuming	the	consistency	of	references	
between	components.	To	support	the	consistency	of	references	WeGovNow	components	can	rely	
on	linked	on	data	provided	by	OntoMap,	on	InputMap	and	on	other	components	APIs	to	consolidate	
the	references.	

2.7 IMPORTING	DATA	
Even	though	WeGovNow	instances	for	the	trial	sites	will	provide	a	relevant	set	of	local	linked	open	
data,	the	platforms	should	support	the	autonomous	intervention	of	municipalities	in	importing	new	
datasets:	open	data,	projects	plans,	proposals,	etc.	The	municipalities	wish	to	be	enabled	to	load	
data	sets	in	a	semi-automated	way	from	in	the	most	common	format	of	spreadsheet	(.csv,	.xls).	
	
The	most	type	of	data	are	geospatial	datasets,	supported	by	GeoKey,	FirstLife	and	OntoMap.	The	
choice	should	be	done	considering	the	very	different	type	of	information	and	features	provided	by	
the	platform.	If	the	point	of	automated	import	is	to	input	a	project	plan	or	surveys,	then	the	choice	
should	fall	on	GeoKey,	if	the	goal	is	to	collect	contributions,	initiatives	and	other	contents	then	it	
should	be	done	via	FirstLife.	About	importing	open	data,	it	is	not	realistic	at	this	point	of	time	to	
provide	automated	tools	for	ontology	alignment.		

2.8 EXPORTING	DATA	
In	order	to	monitor	and	report	about	project	and	activities,	it	is	expected	to	be	enabled	to	use	the	
filtering	 capabilities	 of	WeGovNow	 to	 extract	 datasets,	 for	 instance	 about	 specific	 topics,	 time	
frame,	locations,	etc.	The	export	of	data	should	be	executed	by	organisation	and	municipality	staff.	
Currently,	component	data	can	be	retrieved	via	API	but	about	platform	wise	data	 there	 is	not	a	
solution	 ready.	Nevertheless,	quering	OntoMap	 linked	data	or	 from	OntoMap	 logger	could	be	a	
starting	point	if	we	manage	to	build	a	crawler	which	to	resolve	deep	links.		
	 	

3 Requested	features	and	integrations	
The	service	scenarios	indicate	a	vision	about	the	use	of	the	platform,	providing	a	hypothetic	use	in	
a	 day	 of	 the	 platform.	On	 the	 other	 hand,	 the	 analysis	 of	 collected	 applicative	 scenarios	made	
evident	that	their	implementations	require	an	extensive	use	of	the	platform	for	months	or	years,	
far	 beyond	 the	 presented	 use	 cases.	 Therefore,	 in	 order	 to	 build	 a	 deep	 understanding	 of	 the	
scenarios,	we	introduced	a	workflow	analysis,	to	highlight	the	key	steps	of	each	scenarios	and	define	
a	 sequence	 of	 phases	 to	 reach	 the	 integration	 of	 the	 WeGovNow	 platform	 in	 the	 trial	 sites	
environments,	searching	also	for	common	patterns.		
Service	 scenarios	 are	 described	 also	 in	 relation	 to	 very	 specific	 situations	 and	 groups	 of	
stakeholders,	but	it	is	possible	to	find	common	patterns	among	different	scenarios	and	extend	or	
generalise	 them	 in	 order	 to	 represent	 the	 potential	 application	 of	 WeGovNow	 platform	 as	 a	
continuous	support	tool	for	municipality	and	local	stakeholders	in	a	wide	applicative	context.	
The	 analysis	 of	 service	 scenarios,	 completed	 by	 some	 additional	 interviews	 to	 clarify	 unwritten	
points	and	aspects,	lead	us	to	rethink	them	as	services	progressively	structured	and	used	in	the	trial	
sites	contexts	described	by	synthetic	workflows.		
	
The	results	are	four	main	workflows	of	WeGovNow	platform:	
	

1. Co-design	for	Public	Administration-driven	projects	
2. Co-management	of	local	resources	between	local	stakeholders	and	Public	Administration		
3. Co-production	of	services	between	public	and	private	sector		
4. Coordination	of	private	initiatives	facilitated	by	the	Public	Administration		

	
Following,	the	workflows	descriptions	and	their	key	steps.	

3.1 CO-DESIGN	FOR	PUBLIC 	ADMINISTRATION-DRIVEN	PROJECTS	 	
The	workflow	of	a	co-design	process	usually	can	be	defined	by	a	public	administration	promoting	or	
starting	a	participatory	process	aimed	to	involve	citizens	and	local	organizations	in	expressing	their	
needs	 and	 priorities,	 suggestions,	 proposals	 about	 the	 transformation	 of	 a	 specific	 area	 or	 the	
implementation	 of	 a	 new	 service.	 The	 engagement	 path	 can	 include	 offline	 activities	 such	 as	
seminars	or	workshops	to	be	integrated	with	a	wide	participation	through	the	online	platform	or	
can	be	organized	online	only.		
The	main	goal	 is	to	share	the	responsibilities	of	the	decision	making	process	and	design	plans	or	
interventions	responding	to	the	local	needs	and	expectation.	
The	co-design	workflow	 is	a	generalisation	of	 the	 following	 scenarios:	 “Co-design	of	an	area	 for	
teenagers	and	young	people”	where	the	objective	is	to	design	a	physical	transformations	of	a	Parco	
Dora	sector;	the	“Iron	valley	–	cultural	open	air	museum”	aimed	to	involve	citizens	in	design	the	
future	activities	and	build	the	museum	heritage;	the	“Highway	scheme	scoping	exercise”	oriented	
to	perform	a	community	need	analysis	and	a	collection	of	inputs	from	local	stakeholder	for	a	public	
plan.		
	

	

Phase	1:	Call	for	participation	

	
The	 Municipality	 define	 the	 guidelines	 for	 the	 project	 to	 be	 developed	 and	 launch	 a	 call	 for	
participation	in	the	design	process	opened	to	citizens,	organizations,	local	business,	etc.	operating	
close	to	the	project	area	or	interested	to	the	project	theme.		
	
a) FirstLife	–	public	information	about	the	call		
An	officer	of	the	department	promoting	the	project	publish	the	news	of	the	call	on	FirstLife	to	inform	
citizens	about	this	new	public	initiative.	Citizens	can	explore	the	map,	find	the	news	and	contribute	
by	sharing	additional	contents.		
	
b) Geo-key	/	Community	Maps	-	Context	analysis	and	publication	of	open/public	data	in	thematic	

maps.		
If	the	department	in	charge	of	the	project	already	have	local	surveys	or	one	of	the	task	is	to	make	a	
detailed	context	analysis	or	there	is	a	preliminary	plan,	Geokey/Community	maps	could	be	used	to	
provide	to	citizens	an	intuitive	visualization	of	all	the	available	 information	regarding	the	project	
area	with	different	thematisms:	environment,	local	services,	population,	etc.		
	
c) Liquid	feedback	–	rules	of	participation	in	the	process		
The	office	in	charge	of	the	project	open	a	new	session	on	Liquid	Feedback	dedicated	to	the	project	
in	order	 to	clearly	 communicate	how	to	participate	online	and	offline	 (methods,	events,	 timing,	
access,	 evaluation	 of	 proposal,	 etc),	 start	 thematic	 discussions	 about	 the	 project,	 collect	 users’	
inputs	in	a	preliminary	phase.		

Phase	2:	Co-design	activities	(online	and	offline)		

Workshops	organized	by	one	or	more	departments	of	the	municipality	in	collaboration	with	local	
organizations,	and	online	activities	to	extend	the	offline	participation.	Workshops	can	be	organized	

Call	for	
participation

•Call	for	particpation
•Surveys
•Collecting	inputs

Co-design
•Mapping	proposals
•Planning	engagement
•Developing	project	proposals

Discussion	
and	decision

•Collecting	suggestions
•Update	of	proposals
•Decision	making

Call	for	
contributions

•News
•Searching	for	collaborations

Follow	up

•News
•Documenting	the	project
•Reporting	about	project	
implementation

in	 one	 or	more	 cycle,	 progressively	 oriented	 to	 define	 the	 functions	 and	 then	 components	 and	
design	of	the	area.	
	
a) FirstLife:	collaborative	documentation	of	offline	activities	and	integration	of	online	activities.		
	

• Planning	of	participatory	workshops	by	using	events		
• Documentation	of	offline	meetings	by	using	extra,	posts,	and	other	entities	
• Upload	of	reports	of	offline	meetings		
• Online	co-design	space	(collection	of	proposals,	suggestions,	comments)		
• Integration	of	 data	 regarding	 the	 project	 area	with	 proposals	 open	 for	 discussion	within	

georeferenced	groups	
• Collection	of	proposals	regarding	the	entire	project	area	or	related	to	a	sub-area		
• Collection	of	proposals	related	to	different	topics		
• Search	of	a	proposal	by	tags		

	
b) Geokey-community	maps:	group	maps	corresponding	to	group	proposal		
Every	group	participating	 to	 the	workshop	can	make	 its	own	map,	drawing	 the	elements	of	 the	
proposals	directly	on	 the	map	by	using	drawing	 tools,	and	engaging	other	people	 to	contribute.	
Proposals	including	activities	or	services	can	indicate	the	area	where	they	can	be	implemented.		

Phase	3:	Discussion	and	selection	of	proposals	

Participants	to	offline	and	online	activities	can	discuss	about	proposal	to	be	developed	into	a	final	
project	and	select	their	favourite	option.		
	
a) Liquid	feedback		

• Public	discussion	about	the	main	proposal	developed	during	the	offline	activities	
• Integration	of	new	contributes	in	that	proposals	
• Versioning	and	evolution	of	the	proposal	over	time	until	the	voting	phase		
• Collection	of	suggestions,	comments,	alternatives		
• Selection	of	a	preliminary	project	through	an	online	vote	

	
A	critical/open	point	 is	how	to	differentiate	people	 (and	proposals)	 involved	 in	both,	offline	and	
online	activities,	and	people	contributing	online	only.			

Phase	4	Call	for	contributions	&	call	for	tender		

The	municipality	organize	 a	 call	 for	 tender	based	on	 the	 final	 project	 designed	by	 the	 technical	
officers	 of	 the	 municipality	 and	 a	 call	 for	 contribution	 opened	 to	 local	 supplier	 or	 business	 or	
professional	that	want	to	sponsor	one	or	more	component	of	the	project.		
	
a) FirstLife		
News	about	the	updates	related	to	the	call	for	tender		
Coordination	groups	for	citizens	that	want	to	contribute	in	place	making	
	
b) Trusted	market	place	

Call	 for	 contribution	 addressed	 to	 local	 business	 and	 professionals	 or	 people	 interested	 in	
contributing	 by	 sharing	 resources	 and	 expertise	 to	 build	 outdoor	 furniture,	 decorations,	 and	
additional	components.					

Phase	5.	Follow	up	about	the	project	

Works	start	and	participants	to	the	process	can	stay	up	to	date	about	what	it	is	happening	in	the	
project	area	and	contribute	to	monitor	issues.			
	
a) FirstLife	
News,	groups,	events,	stories	involving	the	administration	and	local	stakeholders		
	
b) Improve	my	city		
To	collect	local	report	within	the	perimeter	of	the	project	area.		

	
c) OntoMap/Trusted	Market	Place		
The	Municipal	staff	want	to	find	all	data	related	to	a	specific	topic,	area,	user	or	class	of	users,	time	
interval	 and	 using	 it	 for	 internal	 or	 institutional	 reports	 in	 an	 aggregated	 way	 throughout	 the	
process.		
	

3.2 CO-MANAGEMENT	OF	PUBLIC 	SPACES, 	COMMONS	AND	SHARED	RESOURCES		
The	workflow	of	the	co-management	of	public	spaces,	commons,	or	shared	resources	in	the	urban	
context	 involve	 the	 Public	 Administration	 in	 sharing	 the	 responsibility	 of	 managing	 them	 by	
supporting	the	civic	proposals	of	citizens	and	local	organizations.		The	main	goal	is	to	offer	a	clear	
framework	 allowing	 citizens	 in	 contributing,	 self-organizing	 their	 activities	 and	 extend	 their	
network.	At	the	same	time,	the	monitoring	of	how	community	resourced	are	used	is	crucial	for	PA.		
The	workflow	of	the	coordination	of	private	initiatives	is	a	generalisation	of	the	following	scenarios:	
	“Regulation	of	common	goods:	Hortus	Conclusus”	and	“Cleaner	Greener	Safer	engagement	map”.	
The	second	scenario	cover	only	the	first	part	of	the	entire	workflow	to	have	an	interactive	map	of	
past	project	and	proposals.		
	

	

Phase	1:	mapping	of	public	spaces/buildings	+	urban	commons	

a) Geo-key	/	community	maps:	PA	data	
The	Municipality	create	a	new	project	on	Geo-key	to	map	the	public	buildings	and	spaces	available	
for	 citizens	 and	 groups	 proposals.	 The	 Staff	 of	 the	 PA	 can	 decide	 the	 structure	 of	 the	 project,	
categories,	material,	type	of	descriptions,	and	all	field	useful	to	represent	this	kind	of	information.	
In	case	of	dataset	already	prepared	they	can	be	imported	on	Geo-key	structuring	automatically	the	
project.		
Analytic	representation	of	places	+	complete	informative	cards.		
b) FirstLife:	participatory	mapping	based	on	flexible	entities	(no	structured	field).		
Citizens	and	local	association,	all	platform	users	in	general,	can	map	new	places	that	they	consider	
urban	common	and	suggest	that	they	could	be	activated	or	regenerated.		
Sharing	of	knowledge	about	places	and	their	perception.		
c) OntoMap:		
The	Municipality,	but	also	local	organizations,	want	to	see	an	aggregation	of	heterogeneous	data	
associated	 to	 the	 same	 spatial	 entities	 on	 both	 platform	 and	 to	 switch	 from	 a	 crowdsourcing	
environment	to	an	institutional	one.	

Phase	2:	Groups	formation,	development	of	civic	proposals,	and	selection	of	proposals		

a) FirstLife:	geo-referenced	public	groups		
Groups	can	be	used	to	propose	an	idea	of	reuse	of	public	spaces	or	urban	commons.	User	can	se	
the	proposal	on	the	map,	stay	up	date	on	news	coming	from	the	PA	or	about	territorial	events	on	
the	 chosen	 space,	 read	 contents	 and	 suggestions	 shared	 by	 other	 contents,	 access	 on	 Liquid	
Feedback.		
	
b) Liquid	feedback:	collaborative	development	of	proposals	and	voting		
PA:	can	set	a	new	session	on	LF	dedicated	to	the	collection	of	proposals	for	a	specific	space,	or	a	
type	of	agreement	(such	as	pact	of	collaboration	or	others)	or	a	class	of	spaces	(such	as	primary	
schools	in	the	district	5).	Pa	can	set	the	rules	for	this	new	session:	interval	of	time	to	collect	proposals	

Mapping	Commons
• Project	presentation
• Mapping
• Information	exchange

Proposals	
formation

• Group	formation
• Proposal	development
• Decision	making

Co-management
and	monitoring

• Event/Groups	
coordination

• Reporting
• Follow	up

needing	 a	 municipal	 support,	 characteristics	 of	 the	 proposals,	 and	 evaluation	 criteria	 for	 each	
proposal	and	explicit	the	relation	between	online	voting	and	administrative	attribution	of	the	space.		
Citizens	and	Associations	can:		

• Add	 a	 new	 proposal	 (initiatives)	 and	 develop	 it	with	 others,	 integrating	 suggestions	 and	
reviews.			

• Support	an	existing	proposal	joining	the	initiatives	
• Vote	for	the	preferred	proposals.		

Phase	3:	co-management	of	spaces,	monitoring	and	reporting.		

a) FirstLife		
Events,	Groups	coordination,	News,	Sharing	of	experiences,	Place	calendar,	Storyline	of	the	project.		
b) Improve	my	city		
Report	of	issues	and	malfunctioning	in	the	building	or	area	used	by	the	groups	managing	the	area.		
Sending	of	request	for	using	other	spaces	and	receiving	authorizations.		
	

3.3 COORDINATION	 OF	 PRIVATE	 INIT IATIVES	 FACIL ITATED	 BY	 THE	 PUBLIC 	
ADMINISTRATION		

The	workflow	of	the	coordination	of	private	initiatives	in	a	public	space	or	in	a	private	space	with	
public	 functions	 involve	 the	 Public	 Administration	 as	 facilitator	 of	 the	 aggregation	 of	 resources	
and/or	people	to	implement	project	and	initiatives	for	the	local	development,	in	an	economic	and	
social	perspective.	The	main	goal	is	to	support	companies	and	private	organizations	managing	or	
operating	in	the	same	space	to	cooperate	and	open	new	opportunities	for	the	local	communities	
through	regeneration	projects	and/or	business	projects.		
The	workflow	of	the	coordination	of	private	initiatives	is	a	generalisation	of	the	following	scenarios:	
	“The	Wine	Cellar	as	a	local	innovative	business	network”	and	“Dora	Shopping	Mall	and	IPERCOOP”.	

	

	

Bussiness	
managing	model •Collecting	ideas

Local	network	
activation

•Mapping	producers
•Sectorial	survey

Interorganizational	
coordination

•Mapping	groups
•Public	events
•Mantainance

Network	
consolidation	

•Mapping	networks
•Search	for	collaborations

Periodical	call

•Documenting
•Proposal	making
•Dissemination

In	 San	 Donà	 di	 Piave,	 the	 applicative	 scenario	 is	 focused	 on	 the	Wine	 cellar,	 a	 building	 under	
rehabilitation	 that	 will	 host	 local	 food	 producers	 for	 commercial,	 educational	 and	 recreational	
activities.	The	main	goal	of	 the	project	 id	 to	define	a	new	collaborative	business	models	 for	 the	
stakeholder	that	are	going	to	use	that	space	and	opened	it	to	the	community.		
In	Turin,	the	applicative	scenario	involve	as	main	actors	the	company	managing	the	Dora	Shopping	
Mall	and	the	Ipercoop,	the	supermarket	 inside,	characterized	by	a	growing	attention	toward	the	
community	through	initiatives	and	projects	hosted	in	their	public	spaces.			
The	second	scenario	cover	only	the	last	part	of	the	entire	workflow	defined	by	the	first	one.		
Both	can	be	extended	to	the	other	spaces	managed	by	private	actors	that	want	to	contribute	 in	
community	activities	oriented	to	social	innovation	and	experiment	new	economic	and	governance	
models	in	a	protected	environment.		

Phase	1:	Collaborative	building	of	the	business/managing	model		

The	 public	 administration	 involve	 the	 companies	 selected	 to	 use	 the	 public	 space	 in	 starting	 a	
democratic	process	to	collaboratively	design	and	decide	the	business	models	to	be	implemented	
within	the	producers	network	in	the	local	hub.			
	
a) Liquid	feedback	
Initial	collection	of	proposals,	development	of	the	most	supported	ideas,	evaluation	of	alternatives	
and	concurrent	proposals,	versioning	and	evolution	of	the	main	idea.		

Phase	2:	Local	network	activation	(Food	system	for	san	Donà)		

a) FirstLife	
Mapping	of	producers	(production	and	selling	spaces,	stories,	updates	about	services,	etc.)		
	
b) Geo	Key/community	map		
Thematic	 maps	 of	 a	 single	 producers	 or	 of	 a	 group	 of	 producers	 to	 communicate	 sectorial	
information.		
	

Phase	3:	Inter-organizational	coordination	in	using	the	common	space	

a) FirstLife		
Public	groups	and	events	where	everyone	can	read	what	 is	happening	and	what	 is	planned	 in	a	
specific	area,	explore	which	events	and	activities	had	been	organised	in	the	past.		
(A	reservation	system	is	out	of	scope,	also	because	areas	often	have	been	already	assigned	and	the	
management	of	spaces	can	be	supported	also	by	other	existing	digital/analogic	tools)		
	
b) Improve	my	city		
Integrate	 the	 reporting	 system	 connected	with	 the	municipality	 offices	with	 a	 reporting	 system	
active	for	the	area	under	private	management	and	its	maintenance	office	to	offer	a	unified	reporting	
system	to	citizens	and	intervene	according	to	the	office	in	charge	for	each	zone.		
	

Phase	4:	Network	consolidation	and	growing	

a) FirstLife		

Activation	of	producers	in	mapping	their	network	of	suppliers	and	distributors,	local	partnerships	
and	 initiatives	 where	 they	 are	 involved,	 inviting	 the	 related	 prospect	 users	 to	 enter	 on	 the	
WeGovNow	platform	and	use	it	to	consolidate	and	extend	the	network.		They	can	enrich	the	map	
by	using	groups,	events,	but	also	collaborative	and	distributed	stories	about	products	and	services.		

	
b) Trusted	market-place			
Research	of	collaboration,	volunteers,	partnership	for	projects	calls,	resources	and	services.		
Visualization	of	the	information	divided	per	theme,	topic,	keywords,	and	area	or	time	interval.		
For	the	Public	administration	is	an	information	tool	to	find	information	about	activities	needing	help	
and	to	build	better	program	for	funds	and	policies	to	support	the	local	development	starting	from	
the	economic	and	social	ecosystem.		

Phase	5:	periodical	call	for	ideas/projects	

a) Trusted	marketplace	
Publication	of	calls	for	ideas	to	organize	temporary	activities	in	the	local	hub	involving	citizens	and	
local	 associations	 and	 disseminations	 to	 users	 interested	 in	 a	 specific	 topic	 or	 active	 in	 related	
activities.		
	
b) Liquid	Feedback	
In	complex	call,	use	of	the	platform	to	build	 integrated	proposals	by	 integrating	 initial	proposals	
with	suggestion	coming	from	new	groups	and	users.		
If	needed,	selection	of	best	proposals.		
	
c) FirstLife	
Publication	of	news	and	updates	on	the	map.		
Collaborative	and	multi-perspective	documentation	of	activities	and	projects	hosted	in	the	local	hub	
with	their	impact	and	collaboration	on	the	territory	with	schools,	public	and	private	organizations,	
community	groups,	etc.	Archive	of	past,	present	and	panned	activities,	exploration	by	keyword	or	
name	of	the	event/project.		
	

3.4 CO-PRODUCTION	OF	SERVICES	BETWEEN	PUBLIC 	AND	PRIVATE	SECTOR		
The	workflow	of	 the	 co-production	of	 services	between	public	 and	private	 sectors	 is	 a	 complex	
scenario	where	the	Public	Administration	has	the	role	of	initiator	of	a	process	aimed	to	create	an	
integrated	system	of	services	in	a	specific	or	crossing	domain.	The	main	goal	is	to	involve	privates,	
businesses,	professionals,	and	the	third	sector	in	sharing	knowledge	and	skills	in	a	common	digital	
space	to	cooperate	in	real	world,	consolidate	their	networks	and	work	synergistically	with	public	
offices.			
The	workflow	of	 co-production	of	 services	 is	 a	generalisation	of	 the	 following	 service	 scenarios:		
“Collaborative	services	in	an	ageing	community”.	
In	San	Donà	di	Piave,	the	applicative	scenario	is	focused	on	social	service	having	as	target	groups	
the	ageing	population,	but	also	unoccupied	people,	low-income	inhabitants,	migrants,	etc.		
The	same	process	could	be	transposed	in	other	branch	of	city	services,	such	as	the	ones	dedicated	
to	education,	job	placement,	environmental	services,	etc.		
Considering	 the	WeGovNow	 platform	 as	 a	 tool	 to	 support	 an	 extensive	 engagement	 path,	 the	
implementation	of	this	kind	of	scenario	can	take	months,	especially	for	the	phase	3	and	5.		
	

	

	
	

Phase	1:	Mapping	of	public	offices/facilities	and	sharing	of	public	information	about	one	or	more	
sectors	of	city	services		

The	 Municipal	 staff	 use	 the	 platform	 to	 make	 available	 a	 set	 of	 public	 information	 currently	
fragmented	in	multiple	portals,	web	pages,	tools	and	municipal	archives.		
In	particular:		

• Representation	 of	 aggregated	 data	 of	 the	 social	 and	 economic	 context	 including	
demographic,	 economic	 and	 social	 information	 (existing	 in	digital	 archives)	 associated	 to	
specific	areas,	such	as	neighbourhoods	or	suburbs.	

• Mapping	 of	 public	 offices,	 facilities	 and	 services	 with	 all	 related	 information:	 	 location,	
opening	times,	target	population,	type	of	services,	application	procedures,	etc.	(For	example	
social	services	for	the	ageing	and	frail	population).		

	
a) Geo-key	/	community	maps	
Set	of	thematic	maps	representing	the	social	and	economic	context	build	on	the	basis	of	existing	
surveys	and	institutional	information.		
	
b) FirstLife	
mapping	of	public	facilities	through	modular	and	flexible	cards,	updated	over	time.		

Phase	2:	Collaborative	monitoring	and	data	integration	(institutional	and	crowdsourced)	

Supported	 by	 communication,	 engagement	 and	 training	 offline/online	 activities,	 citizens	 can	
contribute	to	the	preliminary	mapping	of	public	facilities	by	sharing	additional	contents	on	the	map	
objects	and	use	the	platform	to	request	a	timely	intervention	in	critical	situations.		
The	results	could	be:			

• The	 integration	of	published	data	with	 feedbacks	of	platform	users	 (previously	 trained	 in	
using	the	platform)	

Mapping	
facilities

•Representation	of	
social/economic	information
•Mapping	facilities

Monitoring •Documenting	activities
•Reporting	issues

Mapping	
initiatives

•Group	making
•Starting	initiatives
•Follow	up

Participate	
planning

•Assessment	of	impacts
•Proposal	making
•Decision	making

Co-
production	
of	services

•Matchmaking	of	
collaborations
•Group	coordination
•Sharing	resources

• A	periodic	update	of	official	and	crowdsourced	information	
• The	creation	of	a	dynamic	archive	of	evolving	services	available	for	all	the	platform	users,	

and	not	only	the	policy	makers	and	administrators.		
• An	 online	 and	 fast	 reporting	 system	 not	 focused	 on	 complaints	 but	 on	 request	 of	

intervention	to	the	municipal	offices	in	critical	situations	concerning,	for	instance,	the	elders	
and	frail	community.		

	
a) FirstLife	

• collection	of	comments,	posts,	additional	contents	in	crowdsourcing	
• consultation	of	data	associated	to	every	 interval	of	time	on	the	map	by	using	spatial	and	

temporal	filters.		
	
b) Improve	my	city	
Collection	of	reports	and	request	of	intervention	with	different	level	of	priority	and	connected	to	
the	municipal	offices	involved	in	providing	social	services.			
	
These	activities	start	as	phase	2,	but	then	they	are	supported	by	the	platform	in	the	following	phases	
too,	 in	 order	 to	 produce	 an	 iterative	 assessment	 of	 available	 services	 and	 impact	 of	 public	
actions/interventions	at	territorial	level.		
	

Phase	3:	Aggregation	of	information	about	local	activities,	initiatives	and	projects	independently	
implemented	by	local	stakeholders	

Private	institutions,	professionals,	business,	third	sector	organizations	use	the	platform		
• to	map	their	operational	areas	and	share	information	about	the	services	they	provides.		
• to	document	local	initiatives,	projects	and	events	implemented	in	the	municipality	
• to	represent	their	collaboration/territorial	networks	

	
a) FirstLife:		

• group	maps	visible	to	all	platform	users,		
• initiatives	as	bottom	up	relations	among	map	entities,		
• events	collaboratively	described	through	texts,	images,	links,	etc.				

Phase	4:	Participatory	process	to	define	new	targets	and	services		

Once	the	platform	is	integrated	in	the	city	life	as	a	tool	for	the	municipal	administration	and	local	
stakeholders,	it	could	be	used	to	periodically	launch	a	public	discussion	on	strategic	goals	for	the	
local	communities	and	joint	program	for	social	services	or	other	cross-domain	topics.					
	
a) Liquid	feedback:		

• Assessment	of	available	services	and	impact	of	previous	initiatives	and	projects	
• Online	discussions	about	visions	and	strategic	goals	for	the	community,	with	a	prioritization	

of	related	programs	to	implement	them.			
• Collaborative	building	of	proposals	within	the	implementation	programs.			
• Opinion	 formation	 about	 proposals	 and	 alternatives	 with	 their	 constraints	 and	

opportunities.	

• Selection	of	proposals	with	a	wide	support	from	local	stakeholders	to	be	implemented	year	
after	year.			

• Publication	of	results	of	the	decision-making	process.		
	

Phase	5:	Co-production	of	services	between	public	and	private	sector		

Design	 and	 implementation	 of	 new	 services	 based	 on	 the	 cooperation	 between	 two	 or	 more	
stakeholders,	supported	by	the	local	administration.	Create	local	development	staring	from	social	
needs.			
a) FirstLife:		

• geo-referenced	groups	as	entry	point	 for	 requests,	discussions,	coordinate	 local	activities	
among	distributed	operators	or	sub-groups	

• initiatives	 to	 represent	 the	 local	organizations	 involved	 in	providing	 specific	 services	 in	 a	
project	framework		

• events	and	stories	to	switch	from	offline	activities	to	an	online	collaborative	storytelling	of	
the	city	system	in	the	social	services	domain.		

• bulletin	boards	of	groups	and	organizations	showing	activities,	projects,	events	to	which	they	
collaborated	or	promoted	in	a	selected	interval	of	time.		

	
b) Trusted	marketplace:		

• matching	of	users/organizations	publishing	requests	of	collaborations/resources	with	other	
users/organizations	that	can	offer	them;		

• search	of	requests	on	temporal,	spatial	and	thematic	basis;		
• updates	on	the	status	of	request;	
• collection	skills/resources	cards	for	 local	organizations,	 integrated	with	the	organization’s	

bulletin	board.		
	 	

Conclusions	
From	the	perspective	of	the	development	of	the	platform	we	have	to	conclude	that	the	requests	of	
new	features	falling	within	the	scope	of	the	project	are	far	less	predominant	than	expected.	On	the	
other	 hand,	 sensibility	 of	 stakeholders	 and	 municipalities	 is	 strongly	 focused	 on	 the	 cost	 of	
introducing	a	new	tool	in	their	activities,	and	on	meeting	the	expectation	of	their	end	users.	
There	are	multiple	reasons	for	those	results:	
	

1) Municipalities	are	directly	responsible	of	the	engagement	of	end	users	and	of	their	internal	
staff	 in	 the	 project,	 therefore	 it	 is	 critical	 that	 the	 platform	 does	 not	 jeopardise	 their	
credibility	nor	the	introduction	of	the	platform	within	their	procedures	is	welcomed	as	an	
extra	burden.	

2) The	 integration	 of	 consolidated	 civic	 technologies	 provides	 already	 consolidated	
methodologies,	lessening	the	need	to	develop	new	solutions.		

3) Building	 a	 platform	 from	 stand-alone	 components	makes	 the	 construction	 of	 a	 uniform	
identity	of	the	platform	very	costly	and	complicated.	Those	difficulties	are	very	evident	also	
for	 the	 municipalities	 and	 stakeholders,	 driving	 their	 attention	 toward	 the	 problem	 of	
uniformity,	interoperability	and	identity	of	the	platform.	

	
As	further	consequence	of	WeGovNow	architecture,	the	extension	of	consolidated	components	is	
most	of	the	case	too	costly	for	the	benefits	that	could	be	brought	to	the	project.	A	wise	approach	is	
rather	to	scout	for	existing	solutions	or	develop	new	modules	to	cover	the	requests	of	new	features.	
This	 is	not	surprising:	building	a	new	software	 for	a	 specific	need	 is	much	more	convenient	and	
effective	than	extending	a	consolidated	software:	assessing	the	technical	and	theoretical	feasibility,	
extending	the	source	code,	making	regression	testing,	etc.	Furthermore,	WeGovNow	architecture	
was	specifically	developed	to	support	a	cost-efficient	integration	of	new	components.	
	
About	functional	requirements,	until	the	platform	is	not	going	to	be	used	in	real	condition	is	unlikely	
to	 receive	 specific	 inputs.	 Not	 being	 grounded	 on	 the	 use	 of	 the	 platform	 and	 of	 the	 single	
components,	the	engagement	activities	major	contributions	was	about	the	“vision”	of	WeGovNow	
and	 enabling	 technologies	which	 provide	 the	 opportunity	 to	 rethink	 stakeholders’	 activities.	 As	
collateral	results,	we	found	evidence	of	other	features	which	currently	do	not	fall	in	the	scope	of	
the	project,	but	that	could	be	easily	integrated	in	future	development	of	the	platform.	
	
In	 conclusion,	 we	 expect	 from	 the	 piloting	 the	 platform	 much	 more	 specific	 inputs	 about	
integrations	and	accessory	functionalities	as	support	of	the	daily	use,	that	will	eventually	result	in	
minor	but	essential	 improvements	of	 the	platform	 in	during	the	 last	year	of	 the	project,	and	on	
precious	documentation	for	polishing	WeGovNow	as	professional	service	for	future	exploitation.	
	
	

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

	

Annex 7
Temporal indexing of Urban Entities

TEMPORAL INDEXING OF URBAN ENTITIES:
BUILDING A COLLECTIVE CALENDAR OF CITY

ACTIVITIES

2017-01-30
Department of Computer Science

University of Turin, Italy

In this document, we present a general framework to address the temporal dimensions of urban entities. It
highlights the features and issues related to the interpretation of times and timings of entities. The analysis
is followed by the definition, implementation and experimentation of a temporal indexing system, in the
perspective of the building a web-based global calendar for city activities.

1 INTRODUCTION
Nothing is forever but still most of the web applications do not address dynamics. In the context of
applications for cities, such as online urban communities, dynamics cannot be overlooked but should be
supported as being the foundation of coordination, collaboration and planning among local actors. Urban
entities are in fact tightly bounded to city dynamics: to social and cultural phenomenon and to city services
and activities coexisting in the same space. In this regard, there are specific issues related times (the life cycle
of entities) and timings (the operational times of entities) in the city.

Specifically, times are addressed by almost every commercial technology enabling application to support the
stratification of information during time. In particular, most of the major applications for supporting activities
in the city enables time queries, time views of data but timings (recurrences and times of activities) are still
not supported at the city scale.

For instance, OpenStreetMap (OSM) is the most popular and effective web volunteering geographical
information system (VGI), collecting contributions around the globe. Nevertheless, the representation of
geographical entities is static and this represents a problem in civic social networks based on interactive
maps where entities are accessible through a time window.

One dimension of time is the distinction between a place’s times (when it starts and end to be) and the
timing of the activities it hosts. For instance, there are stable entities providing their functions with a specific
timing, such as openings and vacations, entities do not stop to be but the timing where they operate is much
more relevant in the way we interact with them (is a closed store a resource?). The timing of activities has
a strong impact of the conception of what and when activities can be done and therefore it is not a dimension
which can be overlooked and flattened to entity existence. Moreover, there ephemeral entities which are
even physically present with a certain timing in different places such as market stalls moving around the city
or recurrent events such as music or religious festivals.

TEMPORAL INDEXING OF URBAN ENTITIES 2

In this perspective, the collection of city entities is a unique collective global “calendar” defined by all local
actors and, at the same time, the foundation of their activities. In this regard, in order to enable technology
to represent this global calendar with the times and timings of city entities we need to address issues related
to representation and querying of timings (performance wise), and to user interaction with such huge set of
data. In particular, the proposed framework addresses:

1. Which are the relevant properties of temporal representation?
2. Which is the nature of the entities
3. How to extend common databases to represent and query timings directly at database level

(without relying on software business logics) in a scenario of a global set of entries
4. How to support querying a global calendar of all city entities and activities by heterogeneous

users

The approach proposed in this document starts from an analysis of urban entities as social artefacts. Urban
entities are the results of a network of activities at local level, involving heterogeneous groups of actors. The
time dimensions of urban entities are therefore interrelated with actions and services, processes at urban
level as part of the common playground among local actors. From this perspective, urban entities are
commons (Ostrom, 2015) shared by institutions, citizens and any other local actor, and in general involved
in the orchestration of urban activities, urban planning and part of the mutual understanding of the urban
space.

Thus, the entanglement of urban entities in any other aspect of city life makes the definition of a commons
representation of the dynamic feature of urban entities itself a challenging issue. In fact, from a theoretical
perspective, the multi-dimensionality of temporal features of entities it is not a new issue in the database
research community. The best example of consolidated work is TSQL2 (Snodgrass, 2012), it is a consensus
extension of SQL for temporal structures meant to address time in a very general way. On the other hand,
real applications require enterprise solutions supported by most used database. Just to provide an analogy,
in the field of geographical information systems libraries such as PostGIS successfully enabled developer to
work with geographical entities using a widely used database such as Postgres. In particular, in the case of
PostGIS what really matters were not accuracy or performances of the library but rather its accessibility to
developers. On the contrary, even if TSLQ2 can be considered a mature approach (1993) based on a strong
theoretical framework with the backup of the major experts of the field it still just a theoretical work.

Following this lesson, this contribution does not provide a theoretical framework but a light-weighted ready-
to-use fast solution which can be implemented in the most used databases and ORMs based on standard
languages.

The rest of the contribution analyses the scenario highlighting challenges and existing approaches. Section 3
presents the hybridization of CRON language for job schedules used in operative systems and ICAL standard
for events, its translation in database properties and query language. Section 4 shows applications of such
language and discuss its limitations. Section 5 presents the experimentation results and the future
extensions. Conclusions ends the document.

2 SCENARIO
Representing urban entities is commonly reduced to geographical features. This simplification leads to a
static representation, a snapshot, nevertheless it is a suitable solution in most of the common applicative
cases. For instance, the many geographical tools for web applications such as LeafletJS and OpenLayer used
to collect geographical features do not support temporal information of any kind. Furthermore, technologies

TEMPORAL INDEXING OF URBAN ENTITIES 3

are being updated to dynamic layers of data streams such as environmental sensors, still avoiding to address
the issue of temporal features of urban entities.

Supporting collaboration, cooperation and planning requires the idea of an evolving world in which the
dynamics in term of timing and coordination play a very important role in the success of initiatives. For
instance, the scheduling of the occupation of a public square prevents having a strike, a concert and a sport
event at the same place at the same time.

Urban entities as any social artefacts (Searle, 1995) (Ferraris, 2013) have a lifecycle. In this regard, along with
the classical challenges of dynamic systems there are specific issue related to observability of such entities.
In particular, non-formal entities (not formally defined by local authorities with constitutive actions) being
dependent to the establishment of practices have a very fuzzy beginnings and ends. For instance, it is
possible can count several important phases of a urban entity such a business centre such as the project, the
first contract with a company, the beginning of the construction, the opening, but none of all can be
considered the beginning of the place itself.

Furthermore, urban entities are commonly providers of services at local level. The temporal availability of
service availability adds an extra temporal dimension in addressing dynamic entities, in particular in case of
temporal queries. For instance, the relevance of a closed pharmacy can vary according with the use of the
information, is a user looking to the commodities in our neighbourhood or we are in time of need? Moreover,
past entities are not just not existing anymore but leaving a trace as impact on the perception of what can
or cannot be. On the other side, planned entities which are known to be are “potential” presence on the
territory affecting greatly the overall coordination. For instance, public infrastructures have a huge impact
on the city landscape even before being realised such as an underground line which result on changing the
expansion directives of cities, real estate market, and public/private investments years before the actual
opening.

Summarising, addressing the dynamic of urban entities leads to specific issues related to the very nature of
social artefacts and urban dynamics:

1. Fuzzy timings, the impossibility to establish a change of phase in an entity lifecycle
2. Worktime of urban services, urban entities are not always available or operating but they still

exist
3. Traces of past activities and entities, what was matters
4. Planning the future, potential entities have their own impact even bigger than what they will

actually have

Relating to the dynamics of urban entities, there are many other issues related to keep track of changes of
shape and location, change of functions of urban entities, etc. All of them require the support of temporal
features.

3 MODELLING URBAN ENTITIES
About the fuzzy timing, the establishment of entity phases are mostly due by institutional actions or by
convention. In general, there is not a way to catch the exact beginning and the end of social artefact because
the very nature of social artefacts. In fact, we can address this issue only by relying on evidences provided
by users. In this regards, technology can support the emergency of social artefacts widening the collective
awareness about such entities. Still, urban entities as social artefacts should be managed considering that
there is not a “right” or “rightful” representation because social artefacts are just not fully objective (Ferraris,
2013).

TEMPORAL INDEXING OF URBAN ENTITIES 4

Moreover, the city is made of an infinity of social entities which are not always shared by the most of the
citizens or significant for their activities. For instance, community places are of this kind, they have special
meanings and uses which are established through community practice only, such as a spot in a public park
used to host the neighbourhood party. We address as urban entities only what is significant and relevant for
most of the citizens. This very simple description does not lead to a computable mechanism to “catch” urban
entities from a sea of information such as social media, but in our opinion makes this issue falling in the field
of crowd sourcing.

Given this epistemic assumption, we consider citizen as our platform users the sensors for collecting urban
entities. In order to collect urban entities from users’ contribution we establish a set of entities at the
granularity we wish to catch, for instance events, groups, places.

3.1 INTERMITTENT ENTITIES
Services provided by urban entities may not be always available. This may not be true in general but urban
entities are commons and the interactions with urban entities falls in the problem of commoning (the use of
commons in coordination of local actors) (Bollier, 2014). Therefore, urban entities seen as common
resources to be used in an orchestration require to take into consideration the specific limitations of resource
availability.

In more simple words, the working time of services in the city has a major impact on our daily organization
of activities. Access to the dynamic of urban entities can be approached: 1) at visualization level (opening
time in google maps); 2) considering the timing of the availability of services as a relevance metric to filter
urban entity.

The first approach considers the service availability as a property of the entity (e.g. opening time). This
approach is implemented with is a dynamic visualization of the timing, for instance, the opening time of a
store can be presented as a simple “open” or “close” according with the current date. In particular, it solves
the problem of representing service timing in a static setup (snapshot) thanks to an assumption: the current
time is what users are interested in, for instance see Figure 1.

FIGURE 1. GOOGLE MAPS KEEPS THE OPENING TIME BUT THE INFORMATION IS PRESENTED AS AN EVALUATION, CONSIDERING

THE USER’S CURRENT TIME.

TEMPORAL INDEXING OF URBAN ENTITIES 5

The second approach is based on the necessity to keep the quantity of presented information low, therefore
if a service is not available it should not be a “suggested” to users. In particular, this approach works along
with ranking algorithm based on distance, preferences, popularity introducing one objective parameters in
ranking (and filtering) results. If results are excluded by time queries, we can talk about a dynamic
representation supporting time-based views.

The two approaches encode two complementary ideas: a scope and a point of view. Given a specific query,
the scope (time window) can be narrow or broad accordingly to the quantity of information keeping the
visualisation informative and manageable at the same time. Within a time window, the possible points of
view are multiple. The choice of the point of view can be transparent to users, like in Figure 1, or can be
bounded to the temporal scope of the view. For instance, routing application provide the possibility to
customise a departure time and date, see Figure 2.

FIGURE 2. ROUTING FEATURE PROVIDE TO USER THE POSSIBILITY TO CUSTOMISE THE DEPARTING OR THE ARRIVING TIME, THIS

INFORMATION IS USED FOR INSTANCE TO EVALUATE TRANSPORTATION OPTIONS.

Summarising, there are at least two aspects which need to be considered in order to evaluate temporal
entities: the scope is needed to filter entities according to their valid time; the user’s temporal point of view
is required in order to evaluate the timings. All applications supporting temporal features implement a
theory of scope and/or temporal point of view as explicit or implicit assumptions.

3.2 EPHEMERAL ENTITIES
A new kind of complexity is given by planned or intermittent entities: ephemeral entities. Planned entities
are very important in the city organization, let us consider festivals for instance which with a short duration
of few days requires months of organization involving many local actors in many locations. Intermittent
entities are those entities “happening” with regularity such as markets. The impact of intermittent entities
involves the organization but also: the timing when provided services are available and the unavailability of
other services which are replaced by the intermittent entities. For instance, street markets and parking slots
are mutually exclusive.

The extreme consequence is stressed by the phenomenon of ephemeral cities: giant settlements appearing
and disappearing with an interval of years in case of religious or cultural events (Kehoe, 2011). In this cases

TEMPORAL INDEXING OF URBAN ENTITIES 6

entire cities with their system of infrastructures and services are planned, organised, implemented, and
finally dismantled for existing only for a short period of time but influencing an area for years.

The representation of ephemeral entities can be done with digital maps. In particular, digital maps can
support planning and documentation of ephemeral entities if including a temporal support. Digital maps can
work as exploration tools for what was in the past and what will or can be in the future.

What matters specifically in case of ephemeral entities are the connections among local activities and areas
as complement of planned urban entities. For instance, the difference between a street market stall and
common grocery store is not the timing of provided service but the orchestration of activities before and
after required to setup the service such as setup the market stalls and clearing the market area after, in
addition to the mutual exclusivity use of the same area with other services.

Ephemeral entities are an extreme case of urban entities: some urban entities are planned, other are
incidental but all of them have a live cycle connected to urban activities. Since urban entities are the results
of initiatives, and can trigger many other initiatives at different timing, in order to collect effectively urban
entities, it is required to extend the efforts to the related activities. In other words, the granularity of entities
in an urban calendar should be fine grained at level of activities.

3.3 ASSUMPTIONS ON TIMES AND TIMINGS
Time is one but the temporal features can be many: the duration of an event, the time when the event was
planned, the time when the event become public. In addressing time, there are issue related to time
semantic, how we should evaluate the things we know about an entity if we look at it from a different time
or if we consider at a different scale. In the context of urban entities, which are the relevant temporal
features? What are the relevant questions about the duration and the repetitions of urban entities?

The concept of timing in real applications, time repetitions, is bounded to the concept of time granularity:
time deltas between repetitions. Time granularity is a very complex field: theoretically is the study of
relations between class of time intervals. A calendar is a specific setup of interval classes and relations. For
instance, we can count many “official” calendars across the world such as the western calendar or the
Chinese calendar), school calendars, work calendars with differences in term of durations (work week of 5
rather than 7 days), general alignment (beginning of the year), or specific granularity levels (“semesters” of
4 months in school calendars).

Time granularity is being already addressed (Snodgrass, 2012) making possible to define new calendars and
mapping between calendars. In a context of urban activities everyone refers to the national plus some
common notions of festivities and work time (weekly holidays). In this context, a general framework is not
strictly required instead a pragmatic approach can be implemented with enterprise technology rather
requiring the implementation of theoretical a language such as TSLQ2.

A pragmatic approach does not save us from the problem of time semantics, in particular when comes to
representing information at different granularity. In fact, timed information semantically dependent to the
granularity of their time description. For instance, a salary amount can be per month, week or year. In any
case, a change of time granularity (in information query) may or may not affect the outcome value.

This phenomenon is called telicity and it is mostly applied in studying the semantics of verbs and verbal
phrases. In temporal database, telicity influences the transformation record values according with the
change of time granularity (Khatri, Snodgrass, & Terenziani, 2009). The semantics of time queries is
dependent to telicity of entities. In our context, the “value” that we are referring to is the validity of a result
is a time query.

TEMPORAL INDEXING OF URBAN ENTITIES 7

For instance, an opening time of from 8:00 to 16:00 from Monday to Friday defines the availability of a
service in term of day of the week and hours. The timing is given by the combination of two expressions
defined at different granularity: day and hours. Considering a query about the opening time on Monday and
on Sunday, in the latter case we can safely say that it our shop is closed but in case of Monday we cannot be
certain since during the day there will be both open and close hours. In fact, the granularity of the
combination of the two timing expressions is hours: a shop is opened for 8 hours each 16 hours with two
exemptions each 5 openings. On the other hand, in case of a query for a specific minute such as Monday at
8:59 we don’t have any problem scaling down the granularity.

This example shows how tricky timing in term of query resolution, even trivial case may rise unexpected
complexity. Moreover, it highlights that the telicity has an impact of properties of timed entities. In particular
in case of the previous example, we see different semantics according with store being liquid (Bettini, Wang,
& Jajodia, 1998) or not in respect of its opening time. Liquidity is the property of preserving value changing
the scale upward and or downward. In the previous example was easy to see as opening time have
downward but not upward liquidity.

This issue cannot be solved with a data schema, since schemas do not represent semantic of information
cannot be solved with a priori logic if we do not fix the domain of application and certainly we cannot ask
users to define semantic of time and timing features (Bettini, Wang, & Jajodia, 1998). Furthermore, in case
of punctual time information (timestamps) we may have other properties such as persistence: an entity lasts
unless something changes.

In our context, the conservative position is assuming telicity for each entity and timing expression, in other
words we are not sure when we may assume upward or downward liquidity or persistence: scaling entities
upward or downward or persisting entities in case of punctual time information (now is open) in the future
may mislead users introducing false positives.

Summarising, a pragmatic stand oriented to real-life generalist applications should consider the issue of
telicity or the lack of information carefully, designing a coherent set of assumptions about persistence,
upward and downward liquidity and other possible point-based or interval-based semantics.

In this regards, our approach is to exploit users’ input (on a timeline) about the relevant time window (and
granularity). In fact, since the biggest issue is filtering information, we assume avoid false positive presenting
only the entities whose timing descriptions are defined in the input granularity. This may rise in hiding
important information but since the timeline is interactive, users can still access to information by switching
the time granularity.

3.4 TIME FEATURES AND TIME-BASED TECHNOLOGIES
Entities may have multiple time dimensions. For instance, the classical dimensions in databases are between
transaction time and valid time: the first is the time when an information becomes available in a database,
the latter is the time in which the information is true. Transaction time is mostly punctual and it assume the
persistence of knowledge: knowledge is preserved until it changes. Valid time are commonly expressed by a
couple of dates (start and end dates). The semantic of valid time is usually implemented by business logic
field by field. In commercial databases up to today there is no generic support for time repetitions. In few
rare cases it is possible to express a time schedule: repetition of punctual times and not of time intervals.

Even so, there are few very handy web applications supporting times and timings such as web calendars or
events platforms. In those cases, the solutions are protected by their companies. What we can know is that
the few open source solutions rely on business logics and data visualization in a context of very limited

TEMPORAL INDEXING OF URBAN ENTITIES 8

quantity of information (a user’s events on a calendar are not much). In particular, the visualisation of web
calendar comes in help highlighting a specific portion of time. This enables many possible heuristics such as
dereferencing periodicity in a chain of single events in a reasonable wide time window.

Considering the goal of building a global calendar of millions of events in a territory such as a city, we seek a
production-ready solutions meant to support numbers in real case scenarios. The most used formalism to
express recurrences in software and database are the CRON expressions, regular expressions meant to be
fasted computed with low resources by a job scheduler.

The complexity of cases in real life requires an expressivity much deeper than what may be requested by
technical software such as job schedulers. In this sense, ICalendar standard represent the consensus about
a common language for calendar, defining entities, recurrence expressions, exception, alerts, time zones,
durations and other specific features of real life applications.

3.5 CRON EXPRESSIONS
CRON is a family of time-based job schedulers used in Unix operating systems. CRON jobs are a set of CRON
expressions representing when a task should be triggered. The timing is expressed by a regular expression
(Wikipedia, n.d.) composed of 5 or more substrings defining a set of time points at each time granularity.

 # ┌───────── min (0 - 59)

 # │ ┌────────── hour (0 - 23)

 # │ │ ┌─────────── day of month (1 - 31)

 # │ │ │ ┌─────────── month (1 - 12)

 # │ │ │ │ ┌─────────── day of week (0 - 6) (0 to 6 are

 # │ │ │ │ │ Sunday to Saturday, or use names)

 # │ │ │ │ │

 # │ │ │ │ │

 # │ │ │ │ │

 # * * * * * command to execute

For instance, a command that should be executed each day at 3 a.m., such as a database dump can be
expressed as follows:

 0 3 * * * # every day at 3:00

A job that should be executed once a week (every Saturday at 3:00) such check-up of the file system can be
expressed as:

 0 3 * * 6 # every Saturday at 3:00

TEMPORAL INDEXING OF URBAN ENTITIES 9

A CRON expressions can represent multiple recurrences, for instance at 3 a.m. and 1 p.m. during workdays
on odd months:

 0 3,13 * 1/2 1-5 # from Monday to Friday at 3:00

 # and at 13:00 of Jan, Mar, May,

 # Jul, Sep, Nov

In particular, the syntax allow special symbols (* , / -) representing respectively: no restriction or always (*),
concatenation (3,13 at 3h and 13h), increment of a number n (e.g. /2 every 2 occurrences) and interval (i.e
1-5 from Monday to Friday).

Notice that the third and last field are both at the same granularity since week days are days of the month
too, therefore they can be used together but in case of overlapping the result is not to be duplicated but the
union of the two sets. For instance, considering * * 1/2 * 1-5 says each 2 days starting from the first day of
the month and every day from Monday to Friday, the result will be every day from Monday to Friday plus all
odd Saturdays and Sundays. If one of the two is defined, then the other is ignored.

There exist many versions of CRON expressions extending the semantic. For instance, we considered Quartz
CRON (Quartz) (Software AG, n.d.) which is a Java implementation of CRON. Quartz introduces two extra
fields: seconds and years and more symbols (L # W ?). In particular a Quartz expression can represent
schedules like:

0 15 10 ? * 6#3 # at 10:15 on the third Friday of

 # every month

0 15 10 L * ? # at 10:15 of the last day of

 # every month

0 15 10 * * ? 2016 # at 10:15 of everyday of 2016

Quartz expressivity does not come free, in particular:

− L, # and W symbols standing cannot be resolved without providing a specific
month and year

− ? symbol is used to disable “day of the week” or “day of the month” alternatively.
Otherwise in Quartz the use of both at the same time may lead to unwanted
results.

Quartz notations can actually catch many scenarios we may see in real life. But in order to evaluate a Quartz
expression it is required a specific time (a month or a year) because we can’t say which what is the last day
or the third Thursday of a month in general, but we need to point a month and year (e.g. May 2016). A
Quartz expression cannot be evaluated by its definition but it requires to be resolved with its extensive
representation.

TEMPORAL INDEXING OF URBAN ENTITIES 10

In general, CRON expressions are limited to point-based time information, in other words it is not possible
to represent durations in any of CRON variants. For instance, it is possible to represent the opening time but
not the duration (e.g. from 8:00 until 16:00, 8 hours). Moreover, CRON expressions do not support
exceptions such as not during Christmas holidays (from 25th of Dec to 6th of Jan).

In order to represent durations two CRON expressions are required, one for the starting time and one for
the ending time. This semantic cannot be represented straightforward by a database schema and it requires
a storage procedure to define how to combine the two records.

3.6 ICALENDAR STANDARD
ICalendar is a file format and standard notation for representing events (Oracle Corporation, n.d.). ICalendar
is adopted as intercommunication language among mostly enterprise products and web services such as
Google Calendar, ICal, IBM Lotus Notes, Mircosoft Outlook, Mozilla Thunderbird, etc.

ICalendar define several entities definitions: VCALENDAR (calendar), and entities VEVENT (events), VTODO
(tasks), and VJOURNAL (journal entries). ICalendar is relevant because it takes into account a decade of
experience of the web (1998 updated in the 2009 and still improved) and industrial requirements of the
major software developer.

Concerning the issue of time and timing we can specifically focus on RRULE, the attribute of ICalendar
describing repetitions. RRULE value (RECUR) can express repetitions of time intervals and exceptions too.
Still, RECUR expressions are much more expressive but there are CRON expressions which cannot be
encoded as RECUR, for instance:

 0 0/2 * 1/3 * # at 00:00 every two hours

 # every day of each three months

 # starting in Jan

While CRON expressions are designed to be implemented in job scheduler, ICalendar does not look so, in
particular there are not standard libraries and the specifics are only partially implemented by the supporting
software, making ICalendar mostly an interexchange format rather than an operational language.

4 A DATABASE-ORIENTED SOLUTION FOR TIMES AND TIMINGS
A real world scenario of millions of events suggests the necessity of a solution comparable to common
information storage and retrieval in database. Specifically, we seek to represent time and timing as records
and be able to query such records in real time, fast and without extra burden for the DBMS and without
relying on post processing results crossing field values: we wish to store time and timing as records and be
able to query using the same expressivity using relational selection only.

In order to archive this result, we require a compromise in terms of expressivity of the language for times
and timings. On step of our approach is to decompose complex expressions beforehand in order to keep the
querying simple. The second is to use the same language in both representing and querying time and timing
expressions, in order to implement queries with a simple selection operator.

TEMPORAL INDEXING OF URBAN ENTITIES 11

4.1 FROM POINT-BASED CRON EXPRESSIONS TO INTERVAL-BASED CRON

MASKS
From a computational perspective, the most convenient starting point is standard CRON expressions, but:
can we actually express intervals with CRON masks? As argued previously, CRON expressions are not meant
to express intervals, but repetitions of point-base times.

Considering the following CRON expression:

0 8-16 * * 1-5

It does not express “from 8:00 to 16:00 from Monday to Friday” but a set of points in time “every hour at 00
minutes from 8 to 16, from Monday to Friday”. In particular, CRON expressions represent quantized time
points in 5 granularities, sections of a CRON expression. Following the previous example, we have at each
minute 0 of each hour between 8 and 16 included, each day between Monday and Friday included: 1 × 8 ×
5 = 40 moments each week.

The intervals between two moments are given by the granularity of the section. Following, from moments it
is possible to infer intervals, for instance 0 minutes is equivalent to the set [0,1) because it is not possible to
express a moment between 0 and 1 minutes. As consequence we can consider quantized intervals rather
than just moments. Following, the same example we have 1 minute each hour between 8 to 16 each day
from Monday to Friday, 1 × 8 × 5 = 40 minutes each week.

In this sense, the * symbol indicates the full interval (60 minutes, 24 hours, one month, one week, one year)
according with the position, and the semantics is given by the intersection between the 5 sections.

CRON expressions can converted in 5-tuples of bit masks which are widely supported in commercial
databases. The conversion of CRON expressions in bit masks is trivial since standard CRON are regular
expressions and each section of a CRON expression indicates a set of a finite domain (minutes, hours, etc.).
Following an example:

 # ┌───────── minutes (1…0 1th bit at 1 of 60 bits)

 # │ ┌────────── hour (0010..0 – third bit at 1 of 24 bits)

 # │ │ ┌─────────── day of month (all 0 of 31 bits)

 # │ │ │ ┌─────────── month (1010… - odd bits at 1 of 12 bits)

 # │ │ │ │ ┌─────────── day of week (0..10 6th bit at 1 of 7 bits)

 # │ │ │ │ │

 # │ │ │ │ │

 # │ │ │ │ │

 0 3 * 0/2 6 #every Saturday at 3:00 of odd months

 # m h d M w

The * symbol is encoded as a set of 0 as special case. Now, we need a way to check the matching between a
set of CRON expressions and a query (also a CRON expression). We encoded CRON expressions as a set of 5
bit masks (CRON), using a bit for each. It is possible to query a table of CRON (CRON table) using bitwise
operators, given a CRON as query. Given a query CRON q = (q_m, q_h, q_d, q_M, q_w) and a generic CRON
g = (g_m,g_h,g_d,g_M,g_w), the comparison operator O is defined as follows:

TEMPORAL INDEXING OF URBAN ENTITIES 12

q O g = &&(!q_i || !g_i || q_i & g_i)

With && indicating the conjunction of the disjunction (||) of the check between q and g columns, and & the
bitwise and. In words, a CRON matches iff the conjunction of the check of each column is true. Each column
is matched with the corresponding query section with a disjunction of the following conditions: the CRON
has *, the query has * or the bitwise and between the two bitmasks is true (the intervals overlaps). Following
some examples with generic bitmasks:

q = 00101 00000 10101 00101 11111 # query

c1 = 00000 10001 00000 00001 00000

 true true true true true # q O c1 = true

c2 = 00000 00000 11111 00000 00000

 true true true true true # q O c2 = true

c3 = 00000 00000 01000 00000 00000

 true true false true true # q O c3 = false

c4 = 11111 01100 01000 11000 00110

 true true false false true # q O c4 = false

 The column match is true iff one or both masks are 0 or they have at least one bit at 1 in the same position
(e.g. c4 do not share any bit at 1 with 1 in the 4th column). In words, O is an extension of Allen’s overlap
relations o between intervals to sets of intervals, it is true iff there are overlaps between all sets of intervals
at each granularity. see the following example.

---- ----- # query q

-- -- ------------ # c1 O q = true

 -- -- # c2 O q = false

 ----- ------- # c3 O q = true

Why is it possible to query CRON without explicit dates? A CRON expression in as intentional definition of a
class of intervals but a CRON mask is an extensional definition of a class of intervals. Encoding CRON
expressions in bit masks makes explicit a set description of the class of intervals defined by CRONs enabling
querying operations. A CRON is still a class definition, without casting a CRON within an explicit time we can’t

TEMPORAL INDEXING OF URBAN ENTITIES 13

calculate for instance all intervals. In particular, we don’t have a fixed number of days or Mondays in a month,
but until we can express a query with a CRON it is possible to avoid casting CRON.

As previously described, CRON expressions are not meant for representing nothing more than job schedule;
we need to extend their CRON expressivity in order to partially cover ICalendar cases.

4.2 EXTENDING CRON EXPRESSIVITY
Confronting ICalendar with the software supporting it, it is easy to see that not all possible scenarios are
actually implemented and used but there are some basic features which can be found in all calendar
applications:

1. Date constraints
2. Granularity
3. Exceptions
4. Occurrences
5. Cardinal recurrences

In order to extend the expressivity of CRON we had to enrich the notation introducing new fields in the CRON
table. On the other hand, some notations can be actually addressed simply by encoding the CRON as bit
masks.

4.3 DATE CONSTRAINTS
CRON as defined do not address times but only timings, there is not a way (in standard CRON) to express a
valid time as explicit dates. Moreover, CRON extensions like Quartz support years and seconds, consenting
the representation of date constraints but it did not consider year field in CRON. The reason is that regardless
of the specific field a CRON needs a boundary in order to be encoded as bit masks: an open set cannot be
converted in a fix length bit mask. In order to add a column for years we need to define an upper granularity
such as decades, century or millennia. Summarising, we can only push the problem but in the end we still
need to handle an open set to fix a constraint.

In order to constrain recurrences is sufficient to introduce a valid from and valid to fields. It is a standard
solution in database schema which does not affect performance, in particular it can be a very handy solution
to pre filter records and setup a distributed architecture.

Moreover, the introduction of date constraints may solve some issues related to real life cases, for instance
“18:00 of Monday to 8:00 of Friday” can be easily solved this way. It does not look like but this simple
example cannot be represented with a single CRON because hours constraints should not be applied to each
day of the interval but respectively 18:00 to Monday (18:00 – 23:59) and 8:00 to Friday (0:00 – 8:00). The
related CRON will look like the following:

* 18-8 * * 1-5 # from 18:00 of Monday to 8:00 of Friday?

This expression makes no sense because of the 18-8 interval, but even without this issue it is still not
representable. For instance, we can consider the following revised version

* 8-18 * * 1-5 # from 8:00 of Monday to 18:00 of Friday?

TEMPORAL INDEXING OF URBAN ENTITIES 14

The semantic of this CRON is not what we expect, in fact the right interpretation is the following: from 8 to
18 (10 hours) each day from Monday to Friday. This example requires 3 standard CRON to be expressed:

* 18-0 * * 1 # from 8:00 to 23:59 of Monday

* * * * 2-4 # from Tuesday to Thursday

* 0-8 * * 5 # from 0:00 to 8:00 of Friday

With the introduction of the valid from and valid to we can simply represent the previous example as follows:

* * * * 1-5 (2016/10/17@18:00) (2016/10/21@8:00)

Still, there is a difference between the two solutions, the first one does not require an explicit date, in the
second case we use a date constrain to bind a generic interval description. In the second case the CRON
semantics is wrong but thanks to the validity time the result is as expected.

Validity time can be optional (null by default) as it is implemented in some applications like Google Calendar.
Since we do not need to cast all possible occurrences it does not endanger performances or rise memory
issues.

4.4 GRANULARITY
CRON can represent quantized intervals only, therefore in case of intermediate intervals the only solution is
approximation. For instance, if we encode the timing “8:30 – 12:00, 14:00 – 18:30” using the comma
operator we have the same issue of previous examples because we can’t represent intervals of half hour:

0-30 8-12,14-18 * * * # 8:00 – 8:30, 9:00 – 9:30…

In general, the maximum approximation is the granularity itself, in case of the previous example we should
drop the constraints in the minute section and approximate the ending time to next hour:

* 8-12,14-19 * * * # 8:00 – 12:00, 14:00 – 19:00

In order to use CRON an indexing system the approximations may not be a problem, but in some scenarios
we may require extra sensibility. In this regard, there are two possible strategies:

1. Introducing an intermediate granularity such as day sections (“morning”,
“afternoon”, “evening”, “night”) and the relative column

2. Combining two granularities in one single column, for instance minutes and hours
can be replaced both with half-hours (48 bits)

TEMPORAL INDEXING OF URBAN ENTITIES 15

The two strategies can be combined in order to keep timing representations short. Considering the half-hour
granularity, the previous example can be represented because the quantized intervals become of 30
minutes.

4.5 EXCEPTIONS
A very common case are recurrences with exceptions, in particular with generic exceptions (not just date
restrictions), such as holydays. It is interesting to notice that those kinds of exceptions can be expressed as
CRON, for instance:

* * 25-26 12 * # from 25 to 26 of December

 # Christmas holidays

 The solution we developed introduces the notation of negative CRON, an extra field indicating if the CRON
should include or exclude the related event.

false * * 25-26 12 * # Christmas holidays

true * 8-18 * * 1-6 # Openings 8-18 Mon-Sat

In order to use positive and negative CRON expressions it is required to define how to handle the cases were
both are included in the results (for instance Monday 25 Dec at 12:00). A simple semantics can include an
event if the conjunction of the control flags of the returned CRON is true.

4.6 OCCURRENCES
In commercial applications is common to possibly define an occurrence number as limit for repetitions. For
instance, each two days for 10 times. This can be handy in case of a fixed set of events scheduled at the same
time.

CRON does not support counters but counters are syntactic sugar, explicating the occurrences and indicating
an end date is equivalent. Therefore, in this case it is possible to support this feature through a pre-
processing phase, which it does not increase the overall complexity of the system.

4.7 CARDINAL RECURRENCES
Some recurrences are defined by cardinality, for instance “each second Sunday of the month”. Those cases
are supported by ICalendar and Quartz but not by standard CRON. In particular, cardinal recurrences are
necessary in order to connect days of the week and months, because there is no way know the exact day of
the month in general. In other cases, this notation is syntactic sugar, therefore it can be addressed via pre-
processing inputs.

In order to address this feature, it is required a new column for the cardinality of day of the week (5 bits
because 5 is maximum of occurrences of a day of the week in a month). Given the previous example in Quartz
notation (# indicates the cardinality):

TEMPORAL INDEXING OF URBAN ENTITIES 16

* * * * 0#2 # second Sunday of each month

0 0 0 0 1000000 01000 # equivalent bit masks

Extending the day of the week with cardinality stresses the use of * symbol in queries. In particular we can
consider the following query:

0 0 0 0 1000000 00000 # q = Sunday

0 0 0 0 1000000 01000 # c1 = second Sunday of the month

t t t t true true # q O c1 = true

The problem seems to be the lousy semantic of O but with the same operator we can express two different
queries: “all Sundays” and “some Sundays”. In order to explicit the “all” quantifier the query should be
implemented as follows:

0 0 0 0 1000000 00000 # q1 = some Sundays

0 0 0 0 1000000 11111 # q1 = all Sundays

0 0 0 0 1000000 01000 # c1 = second Sunday of the month

t t t t true true # q1 O c1 = true

t t t t true false # q2 O c1 = false

In particular the use of the symbol * in a query or in entries causes to skip the check, but the full set mask
indicates the full interval as requirement.

4.8 LIMITATIONS
There are cases we cannot address with CRON without generating false positive or false negative results. In
particular, we cannot address:

− The last operator “L” and the negative cardinals (e.g. -1 is equivalent to L, -2 means
second to last, etc.)

− The weekday operator “W” indicating the closest weekday to a given day of the month

Those operators require to evaluate expressions in a given date. Specifically, we do not know how many
Mondays there are in a month (4 or 5?) therefore, we may cannot encode the last or negative cardinals in a
bit mask. Moreover, the weekday requires also to know the positions on weeks in a month in order to
calculate the proximity.

TEMPORAL INDEXING OF URBAN ENTITIES 17

They may exist particular applicative scenarios strongly requiring those operators but among the examples
we collected so far we did not find a case which cannot be converted in the supported notation yet.

5 EXPERIMENTS
Since this contribution wishes to address real life applications, in order to stress the expressivity of the
system, we collected a dataset of real timings from Porta Palazzo market square in the city of Turin, Italy.
Encoding the dataset, we exposed limitations we addressed in the previous section. Following, we stressed
the system performance with random generated entries and queries.

5.1 CORRECTNESS
We collected so far 233 timing descriptions over a total of a hundred of market stalls. Most of them where
very simple but in some cases we found exceptions, seasonal timings, cardinal occurrences and alternate
days.

A sampling the most representative cases:

7:00 - 14:00 Mon – Fri

7:00 – 19:30 Sat

Common opening time.

8:00-13:00, 15:30-19:30 Tue – Fri

7:00 – 19:30 Sat

Closing at lunch time.

 14:00-19:00 Sat from 1st Aug to 15th Oct

This is an exception to the normal opening during summer time.

8:30 – 13:00, 15:30 – 19:30 Mon-Tue, Thu-Fri

8:30 - 13:00 Wed

8:30 – 19:30 Sat

Half day opening on Wednesday.

 9:00 - 13:00, 15:30 – 19:15 Tue – Fri

Closing at 19:15 requires approximation to 19:30.

 9:00 – 12:30, 15:30 – 19:15 Mon-Tue, Thu-Sat

Closed on Wednesday and approximation of the closing time.

 8:30 – 13:00, 15:00 – 19:00 Mon-Fri, Sat/2

Opening on Saturday only each two weeks.

TEMPORAL INDEXING OF URBAN ENTITIES 18

5.2 PERFORMANCES
Tests where run on a document-based database (MongoDB) over more than one million random generated
entries. The tests were conducted increasing the number of queries by tenfold recording total, maximum
and average time.

1.023.944 ENTRIES
NUM. OF RUNS Max time (ms) Total time (ms) Average time

(ms)
1 2 2 2

10 2 4 0,4
100 2 8 0,08

1.000 3 44 0,044
10.000 3 265 0,0265

100.000 3 2380 0,0238
1.000.000 3 21675 0,021675

10.000.000 5 212000 0,0212
TABLE 1. RANDOM QUERIES EXECUTED OVER A DATABASE OF 1.023.944 ENTRIES, THE AVERAGE TIME IS CLOSE TO ZERO (LESS

THAN 0,1 MS).

Following, we repeated tests but firing sets of 10, 100, 1000 and 10000 concurrent queries.

1.023.944 ENTRIES – BATCH OF 10 CONCURRENT QUERIES
NUM. OF RUNS Max time (ms) Total time (ms) Average time

(ms)
1 2 78 7,8

10 2 76 0,76
100 3 333 0,333

1.000 2 1766 0,1766
10.000 2 13799 0,13799

100.000 2 130416 0,130416

1.023.944 ENTRIES – BATCH OF 100 CONCURRENT QUERIES
NUM. OF RUNS Max time (ms) Total time (ms) Average time

(ms)
1 2 3582 35,82

10 2 5919 5,919
100 2 19524 1,9524

1.000 2 127193 1,27193
10.000 2 1203622 1,203622

100.000 6 12437346 1,2437346

1.023.944 ENTRIES – BATCH OF 1.000 CONCURRENT QUERIES
NUM. OF RUNS Max time (ms) Total time (ms) Average time

(ms)
1 2 118111 118,111

10 2 317724 31,7724
100 3 1442373 14,42373

1.000 5 12295172 12,295172

TEMPORAL INDEXING OF URBAN ENTITIES 19

10.000 5 115261069 11,5261069

1.023.944 ENTRIES – BATCH OF 10.000 CONCURRENT QUERIES
NUM. OF RUNS Max time (ms) Total time (ms) Average time

(ms)
1 5 16643359 1664,3359

10 3 26489348 26,489348
100 4 137238709 137,238709

1.000 5 1350002410 135,000241
TABLE 2. RESULTS OF THE EXPERIMENTS WITH BATCH OF CONCURRENT QUERIES, WE CAN SAFELY STATE THAT IN THE WORSE

SCENARIO WITH 10.000 QUERIES WE HAVE WITH MULTIPLE AN AVERAGE TIME OF LESS THAN 0,2 SECONDS.

Tests were performed on a VM with 2 cores and 2 gb of RAM only without any database tuning. The overall
result is in worst scenario less than 0,2 seconds in case of 10.000 concurrent queries. As far as we know,
there are no available results for comparison but in term of web services and considering a common
workload of 100 concurrent queries the time is irrelevant (less than 0,2 milliseconds) considering an average
time of 70 ms for very fast cached calls such as Google Maps’s API.

6 CONCLUSIONS AND FUTURE APPLICATIONS
This document addresses the technical issues of representing times and timings of urban entities in order to
build a collective calendar of city activities. In particular, the premises of the proposed solution are: an
applicative scenario in which there is not a user-based partition of entries such as in calendar applications;
an indexing system to compute the relevant entries should not require business logic to run at query time;
the solution should be able to represent real cases; the solution performances with a common environment
setup should not hindrance the overall performances.

The developed solution is based on the most common formalism for timings, CRON expression, and
integrated in order to support time intervals, valid time and the most common features supported in the
standard format for calendar for software applications ICalendar.

Along with the discussion of the specific issues of representing timing according with the premises, we
introduced a set of solutions, workaround and limitations in the scope of the presented solution. Despite
limitations, the solution was proved to be able to represent real cases of timing collected from real
commercial activities in a dynamic environment such as market squares.

Following, through a set of experiments with random entries and random queries we tested the solution in
a low capacity environment such as a common web server. The experiments where organised as cycles of
batch queries fired concurrently. In a common scenario with 100 concurrent access the queries where solved
in a fraction of millisecond. Under heavy requests (10.000 concurrent queries) the system archived a
maximum an average time of 0,135 seconds without any caching system or database tuning.

In conclusion, the presented solution can be used to represent and retrieve high number of entries with a
common database without relying on post processing results. The costs in term of expressivity and
approximation compared with the real world examples are shown to be very reasonable. Moreover, it was

TEMPORAL INDEXING OF URBAN ENTITIES 20

discussed a set of possible workaround in order to extend the expressivity or compress the representation
according with the application demands.

7 REFERENCES
Bettini, C., Wang, X. S., & Jajodia, S. (1998). Temporal semantic assumptions and their use in databases. IEEE

Transactions on Knowledge and Data Engineering, 10(2), p. 277-296.

Bollier, D. (2014). Think Like a Commoner . Gabriola Island, Canada: New Society Publishers.

Ferraris, M. (2013). Documentality: Why it is necessary to leave traces. Fordham University Press.

Kehoe, K. L. (2011). Burning Man was better next year:" a phenomenology of community identity in the Black
Rock counterculture. California State University, Communication Studies. Sacramento: Diss.

Khatri, V., Snodgrass, R. T., & Terenziani, P. (2009). Telic distinction in temporal databases. In Encyclopedia
of database systems (p. 2911-2914). Springer US.

Oracle Corporation. (s.d.). ICalendar. Tratto da ietf.org: https://tools.ietf.org/html/rfc5545

Ostrom, E. (2015). Governing the commons. Cambridge university press.

Searle, J. R. (1995). The construction of social reality. Simon and Schuster.

Snodgrass, R. T. (2012). The TSQL2 temporal query language (Springer Science & Business Media ed., Vol.
330). Springer.

Software AG. (s.d.). Tratto il giorno 2016 da Quartz Job Scheduler: http://www.quartz-scheduler.org/

Wikipedia. (s.d.). Cron. Tratto il giorno November 2016 da Wikipedia: https://en.wikipedia.org/wiki/Cron

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

Annex 8
WeGovNow Environments Cheat Sheet

wegovnow.firstlife.org

pt1.wegovnow.firstlife.org

sandona.wegovnow.firstlife.org southwark.wegovnow.firstlife.org torino.wegovnow.firstlife.org

pt2.wegovnow.firstlife.org pt3.wegovnow.firstlife.org

wegovnow.infalia.com

pt1-imc.infalia.com

sandona-imc.infalia.com southwark-imc.infalia.com torino-imc.infalia.com

pt2-imc.infalia.com pt3-imc.infalia.com

tmp.infalia.com

sandona.api.ontomap.eu southwark.api.ontomap.eu torino.api.ontomap.eu

pt2-tmp.infalia.com pt3-tmp.infalia.com

wegovnow.liquidfeedback.com

wegovnow-pt1.liquidfeedback.com

sandona.liquidfeedback.net southwark.liquidfeedback.net torino.liquidfeedback.net

wegovnow-pt2.liquidfeedback.com wegovnow-pt3.liquidfeedback.com

dev.api.ontomap.eu

p2.api.ontomap.eu p3.api.ontomap.eu

areaviewer.firstlife.org

sandona.areaviewer.firstlife.org southwark.areaviewer.firstlife.org torino.areaviewer.firstlife.org

wegovnow-cm.geokey.org.uk

wegovnow-cm.geokey.org.uk

sandona-tmp.infalia.com southwark-tmp.infalia.com torino-tmp.infalia.com

inputmap.firstlife.org

inputmap-pt1.firstlife.org
inputmap-pt2.firstlife.org pt3.inputmap.firstlife.org

loggerproxy.firstlife.org

loggerproxy-sandona.firstlife.org loggerproxy-southwark.firstlife.org loggerproxy-torino.firstlife.org

loggerproxy-pt2.firstlife.org pt3.areaviewer.firstlife.org

tiles.firstlife.org

tiles.firstlife.org tiles.firstlife.org tiles.firstlife.org

tiles.firstlife.org

tiles.firstlife.org loggerproxy-pt3.firstlife.org
tiles.firstlife.org

Cheatsheet Environments

FirstLife -
Improve My City -
Liquid Feedback -

Community Maps -
Trusted Marketplace -

Ontomap -
Inputmap -

Area Viewer -
Logger Proxy -

Tile Server -

FirstLife -
Improve My City -
Liquid Feedback -

Community Maps -
Inputmap -

Tile Server -

FirstLife -
Improve My City -
Liquid Feedback -

Trusted Marketplace -
Ontomap -

Area Viewer -
Logger Proxy -

Tile Server -

FirstLife -
Improve My City -
Liquid Feedback -

Trusted Marketplace -
Ontomap -

Area Viewer -
Logger Proxy -

Tile Server -

FirstLife -
Improve My City -
Liquid Feedback -

Trusted Marketplace -
Ontomap -

Area Viewer -
Logger Proxy -

Tile Server -

FirstLife -
Improve My City -
Liquid Feedback -

Trusted Marketplace -
Ontomap -
Inputmap -

Logger Proxy -
Tile Server -

FirstLife -
Improve My City -
Liquid Feedback -

Trusted Marketplace -
Ontomap -
Inputmap -

Area Viewer -
Logger Proxy -

Tile Server -

Pt1 -

San Donà di Piave - Southwark - Torino -

Pt2 -

Dev -

Pt3 -pt1.wegovnow.eu

sandona.wegovnow.eu southwark.wegovnow.eu torino.wegovnow.eu

pt2.wegovnow.eu

dev.wegovnow.eu

pt3.wegovnow.eu

http://wegovnow.firstlife.org
http://pt1.wegovnow.firstlife.org
http://sandona.wegovnow.firstlife.org
http://southwark.wegovnow.firstlife.org
http://torino.wegovnow.firstlife.org
http://pt2.wegovnow.firstlife.org
http://pt3.wegovnow.firstlife.org
http://wegovnow.infalia.com
http://pt1-imc.infalia.com

http://sandona-imc.infalia.com

http://torino-imc.infalia.com

http://pt2-imc.infalia.com

http://pt3-imc.infalia.com

http://tmp.infalia.com

http://sandona.api.ontomap.eu
http://sandona.api.ontomap.eu
http://southwark.api.ontomap.eu
http://sandona.api.ontomap.eu
http://torino.api.ontomap.eu
http://sandona.api.ontomap.eu
http://pt2-tmp.infalia.com

http://pt3-tmp.infalia.com

http://wegovnow.liquidfeedback.com
http://wegovnow-pt1.liquidfeedback.com
http://sandona.liquidfeedback.net
http://torino.liquidfeedback.net
http://wegovnow-pt2.liquidfeedback.com
http://wegovnow-pt3.liquidfeedback.com
http://dev.api.ontomap.eu
http://p2.api.ontomap.eu
http://p3.api.ontomap.eu
http://areaviewer.firstlife.org
http://sandona.areaviewer.firstlife.org
http://southwark.areaviewer.firstlife.org
http://torino.areaviewer.firstlife.org
http://wegovnow-cm.geokey.org.uk

http://wegovnow-cm.geokey.org.uk

http://sandona-tmp.infalia.com
http://torino-tmp.infalia.com
http://inputmap.firstlife.org
http://inputmap-pt1.firstlife.org
http://inputmap-pt2.firstlife.org
http://pt3.inputmap.firstlife.org
http://loggerproxy.firstlife.org

http://loggerproxy-sandona.firstlife.org
http://loggerproxy-southwark.firstlife.org
http://loggerproxy-torino.firstlife.org
http://loggerproxy-pt2.firstlife.org

http://pt3.areaviewer.firstlife.org
http://tiles.firstlife.org
http://tiles.firstlife.org
http://tiles.firstlife.org
http://tiles.firstlife.org
http://tiles.firstlife.org
http://tiles.firstlife.org
http://loggerproxy-pt3.firstlife.org
http://tiles.firstlife.org
http://pt1.wegovnow.eu
http://sandona.wegovnow.eu
http://southwark.wegovnow.eu
http://torino.wegovnow.eu
http://pt2.wegovnow.eu
http://dev.wegovnow.eu
http://pt3.wegovnow.eu

	 	 D3.5	Final	prototype	of	WeGovNow	platform	

Annex 9
WeGovNow Pilot Vademecum Model

	

	

	

	 	

San	Donà	di	Piave	Information	Manual	

	

	

Pattern	1	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	
minim	veniam,	quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	
voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."	

	
	
	
	
	

	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	
	 	
Referent:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna		
	
Name	Surname	
phone	number:	011/00000000	
e-mail:	name@example.org	
	

Pattern	2	
	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	
minim	veniam,	quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	
voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."	

	
	
	
	
	

	
	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	
	 	
Referent:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna		
	
Name	Surname	
phone	number:	011/00000000	
e-mail:	name@example.org	
	 	

	

	

Pattern	3	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	
minim	veniam,	quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	
voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."	

	
	
	
	
	

	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	
	 	
Referent:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna		
	
Name	Surname	
phone	number:	011/00000000	
e-mail:	name@example.org	

	

	

	

	

	

	

FirstLife	

Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	aute	irure	dolor	
in	reprehenderit	in	voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	
pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	
qui	officia	deserunt	mollit	anim	id	est	laborum."	

	
	
Developers:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing		
	
Name	Surname	
Phone	Number:	011/00000000						
e-mail:	name@example.org	
	
Problem	Solving:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	
Name	Surname	
Phone	Number:	011/00000000									
e-mail:	name@example.org	
	
Tutorial	and	Guide:	
tutorial.example.org

	

	

Improve	My	City	

	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	
eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	dolore	
eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	
sunt	in	culpa	qui	officia	deserunt	mollit	anim	id	est	laborum."	

	
	
Developers:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing		
	
Name	Surname	
Phone	Number:	011/00000000						
e-mail:	name@example.org	
	
Problem	Solving:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	
	
Name	Surname	
Phone	Number:	011/00000000									
e-mail:	name@example.org	
	
Tutorial	and	Guide:	
tutorial.example.org

Liquid	Feedback	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	aute	irure	dolor	
in	reprehenderit	in	voluptate	velit	esse	cillum	nulla	pariatur.	Excepteur	
sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."		

	
	
Developers:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing		
	
Name	Surname	
Phone	Number:	011/00000000						
e-mail:	name@example.org	
	
Problem	Solving:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	
	
Name	Surname	
Phone	Number:	011/00000000									
e-mail:	name@example.org	
	
Tutorial	and	Guide:	
tutorial.example.org	

Community	Maps	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	dolore	eu	fugiat	
nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	
culpa	qui	officia	deserunt	mollit	anim	id	est	laborum."		

	
Developers:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing		
	
Name	Surname	
Phone	Number:	011/00000000						
e-mail:	name@example.org	
	
Problem	Solving:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	
	
Name	Surname	
Phone	Number:	011/00000000									
e-mail:	name@example.org	
	
Tutorial	and	Guide:	
tutorial.example.org	

	

Trusted	MarketPlace	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	dolore	eu	fugiat	
nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	laborum."	
		

	
Developers:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing		
	
Name	Surname	
Phone	Number:	011/00000000						
e-mail:	name@example.org	
	
Problem	Solving:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	
elit,	sed	do	eiusmod	tempor	incididunt	
	
Name	Surname	
Phone	Number:	011/00000000									
e-mail:	name@example.org	
	
Tutorial	and	Guide:	
tutorial.example.org	

Partners	

Institutions:	

	

	

			 	

	

Organizations:	

	

	

Company:	

	

	

	

	 	

San	Donà	di	Piave	Informazioni	

	

	

Scenario	1	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	
minim	veniam,	quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	
voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."	

	
	
	
	

	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	
	 	
Referente:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	

Scenario	2	
	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	
minim	veniam,	quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	
voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."	

	
	
	
	

	
	
	
	
	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	
	 	
Referente:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	

Scenario	3	

	

	

	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	enim	ad	
minim	veniam,	quis	nostrud	exercitation	ullamco	laboris	nisi	ut	aliquip	ex	ea	commodo	consequat.	Duis	aute	irure	dolor	in	reprehenderit	in	
voluptate	velit	esse	cillum	dolore	eu	fugiat	nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."	

	
	
	
	
	

	
	
"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	
	 	
Referente:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	ut	labore	et	dolore	magna		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	

	

	

	

	

FirstLife	
	

Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
temp.	Ut	.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	
qui	officia	deserunt	mollit	anim	id	est	laborum."	

	
	
	
	
Sviluppatori:	"Lorem	ipsum	dolor	sit	amet,	consectetur		
		
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Assistenza:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Guida	all’uso:	
tutorial.example.org	

	

	

Improve	My	City	
	

	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	
eiusmod	tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	aute	
irure	dolor	in	reprehenderit	in	voluptate	velit	esse	cillum	non	proident,	
sunt	in	culpa	qui	officia	deserunt	mollit	anim	id	est	laborum."	

	
	
Sviluppatori:	"Lorem	ipsum	dolor	sit	amet,	consectetur		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Assistenza:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Guida	all’uso:	
tutorial.example.org	

Liquid	Feedback	
	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	aute	irure	dolor	
in	reprehenderit	in	voluptate	velit	esse	cillum	nulla	pariatur.	Excepteur	
sint	occaecat	cupidatat	non	proident,	sunt	in	culpa	qui	officia	deserunt	
mollit	anim	id	est	laborum."		

	
	
Sviluppatori:	"Lorem	ipsum	dolor	sit	amet,	consectetur		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Assistenza:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Guida	all’uso:	
tutorial.example.org	

	

Community	Maps	
	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	aute	irure	dolor	
in	reprehenderit	in	voluptate	velit	esse	cillum,	sunt	in	culpa	qui	officia	
deserunt	mollit	anim	id	est	laborum."		

	
	
Sviluppatori:	"Lorem	ipsum	dolor	sit	amet,	consectetur		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Assistenza:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	tempor	incididunt	
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Guida	all’uso:	
tutorial.example.org	

	

Trusted	MarketPlace	
	

	

	

"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	sed	do	eiusmod	
tempor	incididunt	ut	labore	et	dolore	magna	aliqua.	Ut	dolore	eu	fugiat	
nulla	pariatur.	Excepteur	sint	occaecat	cupidatat	non	proident,	sunt	in	
culpa	qui	officia	deserunt	mollit	anim	id	est	laborum."	
	

Sviluppatori:	"Lorem	ipsum	dolor	sit	amet,	consectetur		
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Assistenza:	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	elit,	
sed	do	eiusmod	tempor	incididunt	
	
Nome	Cognome	
numero	telefono:	011/00000000	
e-mail:	nome.cognome@prova.org	
	
Guida	all’uso:	
tutorial.example.org	

Partners	
	

Istitutioni:	

	

	

			 	

	

Organizzazioni:	

	

	

Imprese:	

